Der Nuklearmediziner 2020; 43(01): 41-46
DOI: 10.1055/a-1062-1144
Nuklearkardiologie
© Georg Thieme Verlag KG Stuttgart · New York

Konventionelles SPECT und neue Kamerasysteme – Möglichkeiten und Grenzen

Conventional SPECT and new camera designs – new possibilities and limitations
Stephan G. Nekolla
1   Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der TU München, München
2   Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner site Munich Heart Alliance, München
› Author Affiliations
Further Information

Publication History

Publication Date:
28 February 2020 (online)

Zusammenfassung

Die Herzperfusionsszintigrafie ist seit Jahrzehnten ein gut etabliertes Verfahren, dass bei guter diagnostischer Genauigkeit ausgesprochen routinetauglich ist. Dieser Übersichtsartikel fasst den aktuellen Stand der Technik und neue methodische Entwicklungen zusammen. Darüber hinaus werden Aspekte der Auswertung, der Strahlenbelastung und neuer Quantifizierungskonzepte betrachtet.

Abstract

Myocardial perfusion scintigraphy has been a well-established procedure for decades with good diagnostic accuracy and excellent suitability for routine use. This review summarizes the current state of the art as well as new methodological developments. In addition, aspects of the evaluation, the radiation exposure and new quantification concepts are considered.

 
  • Literatur

  • 1 Lindner O, Burchert W, Buechel R. et al. Myocardial Perfusion SPECT 2018 in Germany: Results of the 8th Survey. Nuklearmedizin 2019; 58: 425-433
  • 2 Hachamovitch R. Does ischemia burden in stable coronary artery disease effectively identify revascularization candidates? Ischemia burden in stable coronary artery disease effectively identifies revascularization candidates. Circ Cardiovasc Imaging 2015; DOI: 10.1161/CIRCIMAGING.113.000352. ; discussion p. 8
  • 3 Cohen A, Zaleski EJ, Luebs ED. et al. The use of positron emitter in the determination of coronary blood flow in man. J Nucl Med 1965; 6: 651-666
  • 4 Anger HO. Scintillation Camera with Multichannel Collimators. J Nucl Med 1964; 5: 515-531
  • 5 Yano Y, Van Dyke D, Budinger TF. et al. Myocardial uptake studies with 129Cs and the scintillation camera. J Nucl Med 1970; 11: 663-668
  • 6 Budinger TF, Cahoon JL, Derenzo SE. et al. Three dimensional imaging of the myocardium with radionuclides. Radiology 1977; 125: 433-439
  • 7 Choi JY, Lee KH, Kim SJ. et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol 1998; 5: 395-401
  • 8 Bateman TM, Cullom SJ. Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med 2005; 35: 37-51
  • 9 Goetze S, Brown TL, Lavely WC. et al. Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med 2007; 48: 1090-1095
  • 10 Gomez J, Doukky R, Germano G. et al. New Trends in Quantitative Nuclear Cardiology Methods. Curr Cardiovasc Imaging Rep 2018; DOI: 10.1007/s12410-018-9443-7.
  • 11 Hawman PC, Haines EJ. The cardiofocal collimator: a variable-focus collimator for cardiac SPECT. Phys Med Biol 1994; 39: 439-450
  • 12 Caobelli F, Kaiser SR, Thackeray JT. et al. IQ SPECT allows a significant reduction in administered dose and acquisition time for myocardial perfusion imaging: evidence from a phantom study. J Nucl Med 2014; 55: 2064-2070
  • 13 Caobelli F, Ren Kaiser S, Thackeray JT. et al. The importance of a correct positioning of the heart using IQ-SPECT system with multifocal collimators in myocardial perfusion imaging: a phantom study. J Nucl Cardiol 2015; 22: 57-65
  • 14 Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys Med Biol 2019; 64: 06TR01
  • 15 Slomka PJ, Miller RJH, Hu LH. et al. Solid-State Detector SPECT Myocardial Perfusion Imaging. J Nucl Med 2019; 60: 1194-1204
  • 16 Sharir T, Slomka PJ, Hayes SW. et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010; 55: 1965-1974
  • 17 Einstein AJ, Blankstein R, Andrews H. et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med 2014; 55: 1430-1437
  • 18 Slomka PJ, Betancur J, Liang JX. et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol 2018; DOI: 10.1007/s12350-018-1326-4.
  • 19 Betancur J, Hu LH, Commandeur F. et al. Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. J Nucl Med 2019; 60: 664-670
  • 20 Allie R, Hutton BF, Prvulovich E. et al. Pitfalls and artifacts using the D-SPECT dedicated cardiac camera. J Nucl Cardiol 2016; 23: 301-310
  • 21 Gimelli A, Bottai M, Giorgetti A. et al. Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging 2012; 39: 1254-1261
  • 22 Knollmann D, Raptis M, Meyer PT. et al. Quantitative myocardial perfusion-SPECT: algorithm-specific influence of reorientation on calculation of summed stress score. Clin Nucl Med 2012; 37: 1089-1093
  • 23 Knollmann D, Winz OH, Meyer PT. et al. Gated myocardial perfusion SPECT: algorithm-specific influence of reorientation on calculation of left ventricular volumes and ejection fraction. J Nucl Med 2008; 49: 1636-1642
  • 24 Spier N, Nekolla S, Rupprecht C. et al. Classification of Polar Maps from Cardiac Perfusion Imaging with Graph-Convolutional Neural Networks. Sci Rep 2019; 9: 7569
  • 25 Murthy VL, Lee BC, Sitek A. et al. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med 2014; 55: 1952-1958
  • 26 Ben-Haim S, Murthy VL, Breault C. et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J Nucl Med 2013; 54: 873-879
  • 27 Einstein AJ, Pascual TN, Mercuri M. et al. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS). Eur Heart J 2015; 36: 1689-1696
  • 28 Lindner O, Pascual TN, Mercuri M. et al. Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries. Eur J Nucl Med Mol Imaging 2016; 43: 718-728
  • 29 Einstein AJ, Moser KW, Thompson RC. et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007; 116: 1290-1305
  • 30 Hausleiter J, Meyer T, Hermann F. et al. Estimated radiation dose associated with cardiac CT angiography. JAMA 2009; 301: 500-507
  • 31 Mercuri M, Pascual TN, Mahmarian JJ. et al. Comparison of Radiation Doses and Best-Practice Use for Myocardial Perfusion Imaging in US and Non-US Laboratories: Findings From the IAEA (International Atomic Energy Agency) Nuclear Cardiology Protocols Study. JAMA Intern Med 2016; 176: 266-269