Subscribe to RSS
DOI: 10.1055/a-1021-5040
Elektronische Netzhautimplantate – ein aufgegebener Traum?
Electronic Retina Implants – an Abandoned Dream?Publication History
eingereicht 25 September 2019
akzeptiert 07 February 2020
Publication Date:
17 March 2020 (online)

Zusammenfassung
Während zwischen 2005 und 2016 mehr als 30 000 Cochleaimplantate in Deutschland implantiert wurden, wurden nur weniger als 1% vergleichbarer Eingriffe an der Retina durchgeführt. Die beiden für den Markt zugelassenen Implantattypen haben wirtschaftlich nicht überleben können. Die vorliegende Arbeit diskutiert die Bedeutung und die Zukunft elektronischer Retinaimplantate für die Augenheilkunde.
Abstract
Between 2005 and 2016, over 30,000 cochlear implants were implanted in Germany, while the number of retinal implants remained less than 1% of this number. The two types of retina implants that reached the market did not survive economically. The present review article discusses the impact and future of electronic retina implants in ophthalmology.
-
Literatur
- 1 Watson W. An account of Mr. Benjamin Franklinʼs treatise, lately published, intituled, Experiments and observations on electricity, made at Philadelphia in America. Phil Trans R Soc 1752. Im Internet: https://royalsocietypublishing.org/doi/10.1098/rstl.1751.0032 Stand: 29.06.2019
- 2 Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937; 60: 389-443 Im Internet: https://academic.oup.com/brain/article-abstract/60/4/389/332082?redirectedFrom=fulltext Stand: 18.07.2019;
- 3 Normann RA, Warren DJ, Ammermuller J. et al. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 2001; 41: 1261-1275 doi:10.1016/s0042-6989(00)00273-x
- 4 Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968; 196: 479-493 doi:10.1113/jphysiol.1968.sp008519
- 5 Maynard EM. Visual prostheses. Annu Rev Biomed Eng 2001; 3: 145-168 doi:10.1146/annurev.bioeng.3.1.145
- 6 Zrenner E, Bartz-Schmidt KU, Benav H. et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489-1497 doi:10.1098/rspb.2010.1747
- 7 [Anonym] Durchbruch: Forscher lassen Blinde wieder sehen. Spiegel Online; 2008 Im Internet: https://www.spiegel.de/wissenschaft/mensch/durchbruch-forscher-lassen-blinde-wieder-sehen-a-540770.html Stand: 22.08.2019
- 8 Zrenner E. Will retinal implants restore vision?. Science 2002; 295: 1022-1025 doi:10.1126/science.1067996
- 9 Stingl K, Bartz-Schmidt K-U, Gekeler F. et al. Functional outcome in subretinal electronic implants depends on foveal eccentricity. Invest Ophthalmol Vis Sci 2013; 54: 7658-7665 doi:10.1167/iovs.13-12835
- 10 Daschner R, Rothermel A, Rudorf R. et al. Functionality and performance of the subretinal implant chip Alpha AMS. Sens Mater 2018; 30: 179-182 doi:10.18494/SAM.2018.1726
- 11 Zrenner E. Fighting blindness with microelectronics. Sci Transl Med 2013; 5: 210ps16 doi:10.1126/scitranslmed.3007399
- 12 Humayun MS, Dorn JD, da Cruz L. et al. Interim results from the international trial of Second Sightʼs visual prosthesis. Ophthalmology 2012; 119: 779-788 doi:10.1016/j.ophtha.2011.09.028
- 13 Gekeler K, Bartz-Schmidt KU, Sachs H. et al. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Curr Opin Ophthalmol 2018; 29: 239 doi:10.1097/ICU.0000000000000467
- 14 Edwards TL, Cottriall CL, Xue K. et al. Assessment of the electronic Retinal Implant Alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmology 2018; 125: 432-443 doi:10.1016/j.ophtha.2017.09.019
- 15 Humayun MS, de Juan jr. E, Weiland JD. et al. Pattern electrical stimulation of the human retina. Vision Res 1999; 39: 2569-2576 doi:10.1016/s0042-6989(99)00052-8
- 16 Besch D, Sachs H, Szurman P. et al. Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Br J Ophthalmol 2008; 92: 1361 doi:10.1136/bjo.2007.131961
- 17 Koitschev A, Stingl K, Bartz-Schmidt KU. et al. Extraocular surgical approach for placement of subretinal implants in blind patients: lessons from cochlear-implants. J Ophthalmol 2015; 2015: 842518 doi:10.1155/2015/842518
- 18 Kuehlewein L, Troelenberg N, Stingl K. et al. Changes in microchip position after implantation of a subretinal vision prosthesis in humans. Acta Ophthalmol 2019; 97: e871-e876 doi:10.1111/aos.14077
- 19 Kohler K, Hartmann JA, Werts D. et al. Histologische Untersuchungen zur Netzhautdegeneration und zur Gewebeverträglichkeit subretinaler Implantate. Ophthalmologe 2001; 98: 364-368 doi:10.1007/s003470170142
- 20 Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond) 2017; 31: 1383-1398 doi:10.1038/eye.2017.65
- 21 Dagnelie G, Christopher P, Arditi A. et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Experiment Ophthalmol 2017; 45: 152-159 doi:10.1111/ceo.12812
- 22 Stingl K, Bartz-Schmidt KU, Besch D. et al. Subretinal Visual Implant Alpha IMS – clinical trial interim report. Vision Res 2015; 111: 149-160 doi:10.1016/j.visres.2015.03.001
- 23 Stingl K, Schippert R, Bartz-Schmidt KU. et al. Interim results of a multicenter trial with the new electronic subretinal Implant Alpha AMS in 15 patients blind from inherited retinal degenerations. Front Neurosci 2017; 11: 445 doi:10.3389/fnins.2017.00445
- 24 Stingl K, Bach M, Bartz-Schmidt K-U. et al. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin Exp Optom 2013; 96: 4-13 doi:10.1111/j.1444-0938.2012.00816.x
- 25 da Cruz L, Coley BF, Dorn J. et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013; 97: 632-636 doi:10.1111/j.1444-0938.2012.00816.x
- 26 Dorn JD, Ahuja AK, Caspi A. et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol 2013; 131: 183-189 doi:10.1001/2013.jamaophthalmol.221
- 27 Stingl K, Bartz-Schmidt KU, Besch D. et al. [What can blind patients see in daily life with the subretinal Alpha IMS implant? Current overview from the clinical trial in Tübingen]. Ophthalmologe 2012; 109: 136-141 doi:10.1007/s00347-011-2479-6
- 28 Geruschat DR, Richards TP, Arditi A. et al. An analysis of observer-rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Clin Exp Optom 2016; 99: 227-232 doi:10.1111/cxo.12359
- 29 Retina Implant. Retina Implant AG stellt Geschäftstätigkeit ein. Im Internet: https://www.retina-implant.de/de/ Stand: 22.08.2019
- 30 [Anonymous] Second Sight to accelerate development of Orion® Visual Cortical Prosthesis System. Business Wire 2019. Im Internet: https://www.businesswire.com/news/home/20190515005890/en/ Stand: 22.08.2019
- 31 Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 2000; 46: 3-9 doi:10.1097/00002480-200001000-00002
- 32 The Lasker/IRRF Initiative for Innovation in Vision Science. Chapter 1 – Restoring vision to the blind: the new age of implanted visual prostheses. Transl Vis Sci Technol 2014; 3: 3-13 doi:10.1167/tvst.3.7.3
- 33 Stett A, Mai A, Herrmann T. Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina. J Neural Eng 2007; 4: 7-16 doi:10.1088/1741-2560/4/1/S02
- 34 Stingl K, Greppmaier U, Wilhelm B. et al. Subretinale visuelle Implantate. Klin Monatsbl Augenheilkd 2010; 227: 940-945 doi:10.1055/s-0029-1245830
- 35 Wood EH, Tang PH, De la Huerta I. et al. Stem cell therapies, gene-based therapies, optogenetics, and retinal prosthetics: current state and implications for the future. Retina 2019; 39: 820-835 doi:10.1097/IAE.0000000000002449
- 36 Palanker D, Goetz G, Lorach H. et al. Photovoltaic restoration of sight with high visual acuity in rats with retinal degeneration. Proceedings SPIE 9307. Ophthalmic Technologies XXV 2015; 93070T doi:10.1117/12.2081068
- 37 Palanker D, Le Mer Y. Abstract p. 39. 11th Congress of The Eye and The Chip World Research Congress, Dearborn. 2019
- 38 Vounotrypidis E. Vortrag bei Wacker-Tagung, München. 2019
- 39 Ayton LN, Blamey PJ, Guymer RH. et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 2014; 9: e115239 doi:10.1371/journal.pone.0115239
- 40 Nano Retina. Technology. Im Internet: http://www.nano-retina.com/technology/ Stand: 05.09.2019
- 41 Second Sight Medical Products. Early Feasibility Study of the Orion Visual Cortical Prosthesis System. Im Internet: https://clinicaltrials.gov/ct2/show/NCT03344848 Stand 22.08.2019
- 42 Troyk PR. Abstract p. 51. 11th Congress of The Eye and The Chip World Research Congress, Dearborn 2019.