Zentralbl Chir 2020; 145(02): 176-187
DOI: 10.1055/a-1014-3451
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

„Drug Interaction Stewardship“ (DIS) und therapeutisches Drug-Monitoring (TDM) für die antiinfektive Therapie in der operativen Intensivmedizin, eine monozentrische Beobachtungsstudie

“Drug Interaction Stewardship” (DIS) and Therapeutic Drug Monitoring for Anti-infective Treatment in Intensive Care, a Single Centre Observational Study
Uwe Lodes
1   Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Magdeburg, Deutschland
,
Uwe Troeger
2   Institut für Klinische Pharmakologie, Universitätsklinikum Magdeburg, Deutschland
,
Florian Neuling
1   Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Magdeburg, Deutschland
,
David Jacob
1   Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Magdeburg, Deutschland
,
Frank Meyer
3   Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
11 November 2019 (online)

Zusammenfassung

Einleitung Die Medikation des chirurgischen Intensivpatienten ist schwer kalkulierbar durch gestörte Organfunktionen, Organversagen, pathophysiologische Veränderungen bei schwerer Erkrankung und in der Sepsis, laufende Organersatz-, Nierenersatz- und Leberersatzverfahren sowie die unterschiedliche Pharmakokinetik/Pharmakodynamik (PK/PD) von medikamentösen Substanzen und zahlreichen Medikamenteninteraktionen.

Ziel Interdisziplinäres Vorgehen im klinischen Alltag zur Optimierung sowohl der Vielfachmedikation als auch der laufenden medikamentösen Therapie von Patienten vor indizierten Operationen oder Interventionen sowie im Rahmen des peri- und postoperativen intensivmedizinischen Managements.

Methode Etablierung einer „Drug Interaction Stewardship“ (DIS), analog und zeitgleich zur bereits etablierten Antibiotic Stewardship (ABS) in der Routine einer chirurgischen Intensivstation. Erweiterung des etablierten therapeutischen Drug-Monitorings (TDM) auf Standard-Antiinfektiva (Meropenem, Piperacillin-Tazobactam, Ceftazidim, Linezolid, Voriconazol, Fluconazol, Caspofungin), für die bisher kein TDM etabliert ist, an einer konsekutiven Patientenkohorte über einen definierten Zeitraum im Rahmen einer klinisch-systematischen „Single-Center“-Beobachtungsstudie (tertiäres Zentrum).

Ergebnisse Im Zeitraum 01/2012 bis 08/2016 führten 1454 klinisch-pharmakologische Patientenvisiten zu 385 (26,5%) Änderungen einer vorher vom erfahrenen Intensivmediziner eingestellten medikamentösen Therapie, am häufigsten in 156 (10,7%) Fällen infolge einer neu kalkulierten PK/PD. 2333 Proben TDM ergaben in 1130 Fällen (48,4%) einen Talspiegel im gewünschten Bereich. In 427 (18,3%) Fällen war wegen eines zu niedrigen und in 776 (33,3%) Fällen wegen eines zu hohen Substanzspiegels eine Änderung der antiinfektiven Therapie nach Art, Dosis, Dosisintervall oder Applikationsart erforderlich.

Schlussfolgerung DIS und TDM führen bei chirurgischen Intensivpatienten in einer hohen Rate zur Detektion von unerwünschten Medikamenteninteraktionen sowie inadäquaten Substanzspiegeln mit dem Ansatz für gezielte Therapieänderungen.

Abstract

Introduction Appropriate medication of intensive care patients is complicated by disturbed organ functions and organ failure, pathophysiological changes in severely ill patients as well as possible sepsis, ongoing haemodialysis for renal and hepatic insufficiency, varying pharmacokinetics/-dynamics (PK/PD) of drugs as well as numerous drug interactions.

Aim Illustration of an interdisciplinary approach in daily clinical practice to optimise regular “polymedication” as well as the ongoing medication of patients prior to surgical interventions as indicated and as part of the appropriate peri- and postoperative intensive care management.

Method A so-called “drug interaction stewardship” (DIS) is very similar to the already established “antibiotic stewardship” (ABS) during daily clinical routine of an intensive care unit and has been implemented. In addition, therapeutic drug monitoring (TDM) has been extended to antibiotics/antimycotics (such as meropenem, piperacillin-tazobactam, ceftazidime, linezolide, voriconazole, fluconazole, caspofungin), for which TDM had not yet been established. This was in a consecutive cohort of patients with abdominal surgery over a defined time period and was part of a systematic clinical single centre observational study (tertiary centre).

Results From 01 – 2012 to 08 – 2016, 1,454 single drug patient consultations led to 385 (26.5%) changes in medical treatment, which had been previously initiated by an experienced intensive care physician. Most frequently in 156 cases (10.7%) this was due to newly calculated PK/PD. Analysis of 2,333 TDM samples resulted in a minimum serum level within the adequate range in 1,130 cases (48.4%). In 427 cases (18.3%), the drug serum level was too low and in 776 subjects (33.3%), prompting a change in the type, dose, dose interval and application route.

Conclusion DIS and TDM provide a high rate of detection of unwanted drug interactions and inappropriate drug levels in surgical intensive care patients and help to assure targeted therapy changes.

 
  • Literatur

  • 1 Marshall JC, Cook DJ, Christou NV. et al. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 1995; 23: 1638-1652
  • 2 Vincent JL, Moreno R, Takala J. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22: 707-710
  • 3 Janssens U, Graf C, Graf J. et al. Evaluation of the SOFA score: a single-center experience of a medical intensive care unit 303 consecutive patients with predominantly cardiovascular disorders. Intensive Care Med 2000; 26: 1037-1045
  • 4 Oda S, Hirasawa H, Sugai T. et al. Comparison of Sepsis-related Organ Failure Assessment (SOFA) score and CIS (cellular injury score) for scoring of severity for patients with multiple organ dysfunction syndrome (MODS). Intensive Care Med 2000; 26: 1786-1793
  • 5 Peres Bota D, Melot C, Lopes Ferreira F. et al. The Multiple Organ Dysfunction Score (MODS) versus the Sequential Organ Failure Assessment (SOFA) score in outcome prediction. Intensive Care Med 2002; 28: 1619-1624
  • 6 Boucher BA, Wood GC, Swanson JM. Pharmacokinetic changes in critical illness. Crit Care Clin 2006; 22: 255-271
  • 7 Joukhadar C, Frossard M, Mayer BX. et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 2001; 29: 385-391
  • 8 Scaglione F. Appropriate use of antimicrobials: the peculiarity of septic patients. Int J Antimicrob Agents 2009; 34 (Suppl. 04) S52-S54
  • 9 der Merwe FV, Wallis S, Udy A. Understanding the Impact of Critical Illness on Drug Pharmacokinetics – Scientifically Robust Study Design. J Clinic Toxicol 2012; DOI: 10.4172/2161-0495.S4-002.
  • 10 Ogawa R, Stachnik JM, Echizen H. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 1, drugs administered intravenously). Clin Pharmacokinet 2013; 53: 1083-1114
  • 11 Ogawa R, Stachnik JM, Echizen H. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 2, drugs administered orally). Clin Pharmacokinet 2014; 53: 1083-1114
  • 12 Triginer C, Izquierdo I, Fernández R. et al. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 1990; 16: 303-306
  • 13 Joukhadar C, Klein N, Mayer BX. et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 2002; 30: 1478-1482
  • 14 Bauer SR, Salem C, Connor MJ. et al. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol 2012; 7: 452-457
  • 15 Beumier M, Casu GS, Hites M. et al. β-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care 2014; 18: R105
  • 16 Kees MG. Strategien zur Vermeidung von Antibiotikaresistenzen. Med Klin Intensivmed Notfmed 2013; 108: 125-130
  • 17 Masterton RG. The new treatment paradigm and the role of carbapenems. Int J Antimicrob Agents 2009; 33: 105-110
  • 18 Roberts DM, Roberts JA, Roberts MS. et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 2012; 40: 1523-1528
  • 19 Roberts JA, Paul SK, Akova M. et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis 2014; 58: 1072-1083
  • 20 Seyler L, Cotton F, Taccone FS. et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 2011; 15: R137
  • 21 Choi G, Gomersall CD, Tian Q. et al. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif 2010; 30: 195-212
  • 22 Mueller BA, Pasko DA, Sowinski KM. Higher renal replacement therapy dose delivery influences on drug therapy. Artif Organs 2003; 27: 808-814
  • 23 Sigwalt F, Bouteleux A, Dambricourt F. et al. Clinical complications of continuous renal replacement therapy. Contrib Nephrol 2018; 194: 109-117
  • 24 Morris C, Gray L, Giovannelli M. Early report: The use of Cytosorb haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations. J Intensive Care Soc 2015; 16: 257-264
  • 25 Donadello K, Antonucci E, Cristallini S. et al. β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents 2015; 45: 278-282
  • 26 Dettli L. Drug dosage in renal disease. Clin Pharmacokinet 1976; 1: 126-134
  • 27 Kunin CM. A guide to use of antibiotics in patients with renal disease. A table of recommended doses and factors governing serum levels. Ann Intern Med 1967; 67: 151-158
  • 28 Levey AS, Stevens LA, Schmid CH. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604-612
  • 29 Czock D, Schwenger V, Kindgen-Milles D. et al. Dosierung von Antiinfektiva bei Nierenversagen und Nierenersatztherapie in der Intensivmedizin. Med Klin Intensivmed Notfmed 2018; 113: 384-392
  • 30 Antifungal Agents European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs. 12.02.2018 Im Internet: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/Antifungal_breakpoints_v_9.0_180212.pdf Stand: 05.10.2019
  • 31 Bundesärztekammer. (Muster-)Berufsordnung für die in Deutschland tätigen Ärztinnen und Ärzte in der Fassung des Beschlusses des 118. Deutschen Ärztetages 2015 in Frankfurt am Main. Dtsch Arztebl 2015; 112: A1348
  • 32 World Medical Association. World Medical Association Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013; 310: 2191-2194
  • 33 Verordnung über die Anwendung der Guten Klinischen Praxis bei der Durchführung von klinischen Prüfungen mit Arzneimitteln zur Anwendung am Menschen. Im Internet: http://www.gesetze-im-internet.de/gcp-v/index.html Stand: 05.10.2019
  • 34 Bodmann KF, Grabein B. Expertenkommission der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V.. Empfehlungen zur kalkulierten parenteralen Initialtherapie bakterieller Erkrankungen bei Erwachsenen – Update 2010. Chemother J 2010; 19: 179-255
  • 35 Geginat G, Hülsemann J, Lodes U, Schalk E, Schlüter D, Schreiber J, Tanev I, Tröger U, Vetter R, Zibolka S. Antiinfektivakommission des Universitätsklinikums Magdeburg. Hrsg. Antiinfektiva-Leitfaden. 5. Aufl.. Magdeburg: Universitätsklinikum A.ö.R.; 2017
  • 36 Kim J, Craft DW, Katzman M. Building an antimicrobial stewardship program: cooperative roles for pharmacists, infectious diseases specialists, and clinical microbiologists. Lab Med 2015; 46: e65-e71
  • 37 Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis 2007; 45 (Suppl. 02) S129-S136
  • 38 Roe JL, Fuentes JM, Mullins ME. Underdosing of common antibiotics for obese patients in the ED. Am J Emerg Med 2012; 30: 1212-1214
  • 39 Rabady S. Medikationsmanagement. DAM 2017. Im Internet: https://ch.universimed.com/fachthemen/8041 Stand: 05.10.2019
  • 40 Andes D, Azie N, Yang H. et al. Drug-drug interaction associated with mold-active triazoles among. Antimicrob Agents Chemother 2016; 60: 3398-3406
  • 41 Bennis Nechba R, El MʼBarki Kadiri M, Bennani-Ziatni M. et al. Difficulty in managing polypharmacy in the elderly: case report and review of the literature. J Clin Gerontol Geriatr 2015; 6: 30-33
  • 42 Bhagavathula AS, Berhanie A, Tigistu H. et al. Prevalence of potential drug-drug interactions among internal medicine ward in University of Gondar Teaching Hospital, Ethiopia. Asian Pac J Trop Biomed 2014; 4 (Suppl. 01) S204-S208
  • 43 Corsonello A, Abbatecola AM, Fusco S. et al. The impact of drug interactions and polypharmacy on antimicrobial therapy in the elderly. Clin Microbiol Infect 2015; 21: 20-26
  • 44 Krishna G, Sansone-Parsons A, Kantesaria B. Drug interaction assessment following concomitant administration of posaconazole and phenytoin in healthy men. Curr Med Res Opin 2007; 23: 1415-1422
  • 45 Kämmerer W. Klinisch relevante pharmakokinetische Arzneimittelinteraktionen in der Intensivmedizin. Med Klin Intensivmed Notfmed 2012; 107: 128-140
  • 46 Murtaza G, Khan MYG, Azhar S. et al. Assessment of potential drug-drug interactions and its associated factors in the hospitalized cardiac patients. Saudi Pharm J 2016; 24: 220-225
  • 47 Rodrigues AT, Stahlschmidt R, Granja S. et al. Clinical relevancy and risks of potential drug-drug interactions in intensive therapy. Saudi Pharm J 2015; 23: 366-370
  • 48 Baniasadi S, Farzanegan B, Alehashem M. Important drug classes associated with potential drug-drug interactions in critically ill patients: highlights for cardiothoracic intensivists. Ann Intensive Care 2015; 5: 44
  • 49 Akpan M, Ahmad R, Shebl N. et al. A review of quality measures for assessing the impact of antimicrobial stewardship programs in hospitals. Antibiotics (Basel) 2016; 5: 5 doi:10.3390/antibiotics5010005
  • 50 Akrami K, Sweeney DA, Malhotra A. Antibiotic stewardship in the intensive care unit: tools for de-escalation from the American Thoracic Society Meeting 2016. J Thorac Dis 2016; 8: S533-535
  • 51 Belló MS, Gil AM, Soria MÁL. et al. Clinical outcomes of the inclusion of the therapeutic drug monitoring report in the electronic clinical record. Farm Hosp 2016; 40: 341-351
  • 52 Dellit TH, Owens RC, McGowan jr. JE. et al. Infectious Diseases Society of America and the Society for Healthcare of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007; 44: 159-177
  • 53 Wu LD, Walker SA, Elligsen M. et al. Antibiotic use and need for antimicrobial stewardship in long-term care. Can J Hosp Pharm 2015; 68: 445-449
  • 54 Huttner B, Harbarth S, Nathwani D. Success stories of implementation of antimicrobial stewardship: a narrative review. Clin Microbiol Infect 2014; 20: 954-962
  • 55 Pasquau J, Sadyrbaeva S, De Jesús SE. et al. [The role of antimicrobial stewardship programs in the control of bacterial resistance]. Rev Esp Quimioter 2016; 29 (Suppl. 01) S47-S51
  • 56 Pea F, Viale P, Cojutti P. et al. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 2012; 67: 2034-2042
  • 57 Pfaller MA, Castanheira M. Nosocomial candidiasis: antifungal stewardship and the importance of rapid diagnosis. Med Mycol 2016; 54: 1-22
  • 58 Schuts EC, Hulscher MEJL, Mouton JW. et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis 2016; 16: 847-856
  • 59 Gerlach M, Egberts K, Dang SY. et al. Therapeutic drug monitoring as a measure of proactive pharmacovigilance in child and adolescent psychiatry. Expert Opin Drug Saf 2016; 15: 1477-1482
  • 60 Kovačević T, Avram S, Milaković D. et al. Therapeutic monitoring of amikacin and gentamicin in critically and noncritically ill patients. J Basic Clin Pharm 2016; 7: 65-69
  • 61 Takahashi Y, Takesue Y, Takubo S. et al. Preferable timing of therapeutic drug monitoring in patients with impaired renal function treated with once-daily administration of vancomycin. J Infect Chemother 2013; 19: 709-716
  • 62 Bellmann R. Pharmakokinetische und pharmakodynamische Aspekte bei der Antibiotikatherapie. Med Klin Intensivmed Notfmed 2014; 109: 162-166
  • 63 Carlier M, Stove V, Wallis SC. et al. Assays for therapeutic drug monitoring of β-lactam antibiotics: a structured review. Int J Antimicrob Agents 2015; 46: 367-375
  • 64 Charmillon A, Novy E, Agrinier N. et al. The ANTIBIOPERF study: a nationwide cross-sectional survey about practices for β-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin Microbiol Infect 2016; 22: 625-631
  • 65 Fridlund J, Woksepp H, Schön T. A microbiological method for determining serum levels of broad spectrum β-lactam antibiotics in critically ill patients. J Microbiol Methods 2016; 129: 23-27
  • 66 Di Nardo M, Cairoli S, Goffredo BM. et al. Therapeutic drug monitoring for meropenem after the extracorporeal membrane oxygenation circuit change in children: is it necessary?. Minerva Anestesiol 2016; 82: 1018-1019
  • 67 Nicolau DP, Carmeli Y, Crank CW. et al. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents 2012; 39: 11-15
  • 68 Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37: 840-851
  • 69 Scaglione F. Pharmacokinetic/pharmacodynamic (PK/PD) considerations in the management of Gram-positive bacteraemia. Int J Antimicrob Agents 2010; 36 (Suppl. 02) S33-S39
  • 70 Tröger U, Drust A, Martens-Lobenhoffer J. et al. Decreased meropenem levels in Intensive Care Unit patients with augmented renal clearance: benefit of therapeutic drug monitoring. Int J Antimicrob Agents 2012; 40: 370-372
  • 71 Zander J, Döbbeler G, Nagel D. et al. Variability of piperacillin concentrations in relation to tazobactam concentrations in critically ill patients. Int J Antimicrob Agents 2016; 48: 435-439
  • 72 Andes D, Pascua A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 2009; 53: 24-34
  • 73 Smith J, Safdar N, Knasinski V. et al. Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother 2006; 50: 1570-1572
  • 74 Stamm AM, Diasio RB, Dismukes WE. et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 1987; 83: 236-242
  • 75 Veringa A, Ter Avest M, Span LF. et al. Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother 2017; 72: 261-267
  • 76 Pai MP, Turpin RS, Garey KW. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother 2007; 51: 35-39
  • 77 Frimodt-Møller N. How predictive is PK/PD for antibacterial agents?. Int J Antimicrob Agents 2002; 19: 333-339
  • 78 Mouton JW, Dudley MN, Cars O. et al. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs. Int J Antimicrob Agents 2002; 19: 355-358
  • 79 Scaglione F. Can PK/PD be used in everyday clinical practice. Int J Antimicrob Agents 2002; 19: 349-353
  • 80 Schmidt S, Barbour A, Sahre M. et al. PK/PD: new insights for antibacterial and antiviral applications. Curr Opin Pharmacol 2008; 8: 549-556
  • 81 Udy AA, Roberts JA, Lipman J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 2013; 39: 2070-2082
  • 82 Roberts JA, Joynt GM, Choi GYS. et al. How to optimise antimicrobial prescriptions in the Intensive Care Unit: principles of individualised dosing using pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents 2012; 39: 187-192
  • 83 Kumar A, Ellis P, Arabi Y. et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009; 136: 1237-1248