Nervenheilkunde 2019; 38(12): 929-935
DOI: 10.1055/a-0998-0264
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Schläfenlappenepilepsie

Neuropathologiespektrum revisitedTemporal lobe epilepsy
Pitt Niehusmann
1   Abteilung für Neuro-/Pathologie, Universitätsklinikum Oslo
,
Albert J. Becker
2   Sektion für Translationale Epilepsieforschung am Institut für Neuropathologie, Universitätsklinikum Bonn
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2019 (online)

ZUSAMMENFASSUNG

Die Schläfenlappenepilepsie stellt die häufigste fokale Epilepsieform dar. Trotz etablierter Pathologiemuster ergaben sich zuletzt grundlegende Innovationen im Hinblick sowohl auf erworbene Epilepsien mit hippocampalem Ursprung als auch bei fokalen kortikalen Dysplasien und epilepsieassoziierten, oft glioneuronalen Tumoren. Besondere Erwähnung finden Verbesserungen des molekulargenetischen Verständnisses der Erkrankungen.

ABSTRACT

Temporal lobe epilepsy represents the most frequent form of focal epilepsy. Despite established pathology patterns fundamental innovations concerning acquired epilepsies affecting the hippocampal formation as well as with respect to focal cortical dysplasias and epilepsy-associated, often glioneuronal tumors have emerged. Particular emphasis of this article will be on the improvement of the molecular-genetic understanding of these diseases.

 
  • Literatur

  • 1 Blumcke I, Spreafico R, Haaker G. et al Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. The New England journal of medicine 2017; 377 (17) 1648-1656
  • 2 Tellez-Zenteno JF, Hernandez-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy research and treatment 2012; 2012: 630853
  • 3 Cloppenborg T, May TW, Blumcke I. et al Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. Journal of neurology, neurosurgery, and psychiatry 2016; 87 (12) 1322-1329
  • 4 Wieser HG, Ortega M, Friedman A. et al Long-term seizure outcomes following amygdalohippocampectomy. Journal of neurosurgery 2003; 98 (04) 751-763
  • 5 Wiebe S, Blume WT, Girvin JP. et al A randomized, controlled trial of surgery for temporal-lobe epilepsy. The New England journal of medicine 2001; 345 (05) 311-318
  • 6 von Lehe M, Lutz M, Kral T. et al Correlation of health-related quality of life after surgery for mesial temporal lobe epilepsy with two seizure outcome scales. E & B 2006; 9 (01) 73-82
  • 7 Janszky J, Janszky I, Schulz R. et al Temporal lobe epilepsy with hippocampal sclerosis: predictors for long-term surgical outcome. Brain 2005; 128 Pt 2 395-404
  • 8 Bien CG, Raabe AL, Schramm J. et al Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009. Journal of neurology, neurosurgery, and psychiatry 2013; 84 (01) 54-61
  • 9 Blumcke I, Thom M, Aronica E. et al International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013; 54 (07) 1315-1329
  • 10 Stefan H, Hildebrandt M, Kerling F. et al Clinical prediction of postoperative seizure control: structural, functional findings and disease histories. Journal of neurology, neurosurgery, and psychiatry 2009; 80 (02) 196-200
  • 11 Thom M, Liagkouras I, Elliot KJ. et al Reliability of patterns of hippocampal sclerosis as predictors of postsurgical outcome. Epilepsia 2010; 51 (09) 1801-1808
  • 12 Blumcke I, Pauli E, Clusmann H. et al A new clinico-pathological classification system for mesial temporal sclerosis. Acta neuropathologica 2007; 113 (03) 235-44
  • 13 Van Paesschen W, Connelly A. et al The spectrum of hippocampal sclerosis: a quantitative magnetic resonance imaging study. Annals of neurology 1997; 41 (01) 41-51
  • 14 Bien CG, Urbach H, Schramm J. et al Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 2007; 69 (12) 1236-1244
  • 15 Blumcke I, Thom M, Aronica E. et al The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52 (01) 158-174
  • 16 Palmini A. Revising the classification of focal cortical dysplasias. Epilepsia 2011; 52 (01) 188-190
  • 17 Lim JS, Kim WI, Kang HC. et al Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nature medicine 2015; 21 (04) 395-400
  • 18 Jansen LA, Mirzaa GM, Ishak GE. et al PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 2015; 138 Pt 6 1613-1628
  • 19 D’Gama AM, Geng Y, Couto JA. et al Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Annals of neurology 2015; 77 (04) 720-725
  • 20 Sim NS, Seo Y, Lim JS. et al Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurology Genetics 2018; 4 (06) e294
  • 21 Winawer MR, Griffin NG, Samanamud J. et al Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Annals of neurology 2018; 83 (06) 1133-1146
  • 22 Dorre K, Olczak M, Wada Y. et al A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. Journal of inherited metabolic disease 2015; 38 (05) 931-940
  • 23 Najm IM, Sarnat HB, Blumcke I. Review: The international consensus classification of Focal Cortical Dysplasia – a critical update 2018. Neuropathology and applied neurobiology 2018; 44 (01) 18-31
  • 24 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of Tumours of the Central Nervous System.. Revised 4th. Lyon: International Agency for Research on Cancer; 2016
  • 25 Schindler G, Capper D, Meyer J. et al Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta neuropathologica 2011; 121 (03) 397-405
  • 26 Koelsche C, Wohrer A, Jeibmann A. et al Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta neuropathologica 2013; 125 (06) 891-900
  • 27 Gessi M, Hattingen E, Dorner E. et al Dysembryoplastic Neuroepithelial Tumor of the Septum Pellucidum and the Supratentorial Midline: Histopathologic, Neuroradiologic, and Molecular Features of 7 Cases. The American journal of surgical pathology 2016; 40 (06) 806-811
  • 28 Fina F, Barets D, Colin C. et al Droplet digital PCR is a powerful technique to demonstrate frequent FGFR1 duplication in dysembryoplastic neuroepithelial tumors. Oncotarget 2017; 8 (02) 2104-2113
  • 29 Capper D, Jones DTW, Sill M. et al DNA methylation-based classification of central nervous system tumours. Nature 2018; 555 7697 469-474
  • 30 Blumcke I, Coras R, Wefers AK. et al Review: Challenges in the histopathological classification of ganglioglioma and DNT: microscopic agreement studies and a preliminary genotype-phenotype analysis. Neuropathology and applied neurobiology 2019; 45 (02) 95-107
  • 31 Thom M, Liu J, Bongaarts A. et al Multinodular and vacuolating neuronal tumors in epilepsy: dysplasia or neoplasia?. Brain Pathol 2018; 28 (02) 155-171
  • 32 Bodi I, Curran O, Selway R. et al Two cases of multinodular and vacuolating neuronal tumour. Acta neuropathologica communications 2014; 2: 7
  • 33 Huse JT, Snuderl M, Jones DT. et al Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta neuropathologica 2017; 133 (03) 417-429
  • 34 Thom M, Blumcke I, Aronica E. Long-term epilepsy-associated tumors. Brain Pathol 2012; 22 (03) 350-379
  • 35 Wyler AR, Dohan FC, Schweitzer J. et al A grading system for mesial temporal pathology (hippocampal sclerosis) from anterior temporal lobectomy. J Epilepsy 1992; 5 (04) 220-225
  • 36 Thom M, Zhou J, Martinian L. et al Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain 2005; 128 Pt 6 1344-1357
  • 37 Hattingen E, Enkirch SJ, Jurcoane A. et al Hippocampal “gliosis only” on MR imaging represents a distinct entity in epilepsy patients. Neuroradiology 2018; 60 (02) 161-168
  • 38 Pekny M, Pekna M, Messing A. et al Astrocytes: a central element in neurological diseases. Acta neuropathologica 2016; 131 (03) 323-345
  • 39 Kim SY, Senatorov VV, Morrissey CS. et al TGFbeta signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Scientific reports 2017; 7 (01) 7711