neuroreha 2020; 12(01): 15-22
DOI: 10.1055/a-0976-1125
Schwerpunkt

Wie sieht die Zukunft der Schlaganfallrehabilitation aus?

Louise Ada
,
Catherine Dean

Stellen Sie sich vor, dass das derzeitige Modell der Schlaganfallrehabilitation nicht mehr vorhanden ist und dass Sie nun die Gelegenheit haben, noch einmal von vorn anzufangen. Wie würde eine neue Physiotherapie auf der Basis der aktuellen wissenschaftlichen Evidenz aussehen? Bei der Betrachtung wollen wir uns hier auf die Teilaufgabe fokussieren, die Mobilität nach Schlaganfall wiederherzustellen.



Publication History

Article published online:
17 March 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Abraham C, Michie S. A taxonomy of behavior change techniques used in interventions. Health Psychol 2008; 27 (03) 379-387
  • 2 Ada L, Canning C. Changing the way we view the contribution of motor impairments to physical disability after stroke. In: Refshauge K, Ada L, Ellis E. eds. Science-based Rehabilitation: Theories into Practice. Oxford: Elsevier; 2005: 87-106
  • 3 Ada L, O’Dwyer N, O’Neill E. Relation between spasticity, weakness and contracture of the elbow flexors and upper limb activity after stroke: An observational study. Disability and Rehabilitation 2006; 28 (13/14) 891-897
  • 4 Alzahrani MA, Dean CM, Ada L. Relationship between walking performance and types of community-based activities in people with stroke: An observational study. Brazilian Journal of Physical Therapy (Rev Bras Fisioter) 2011; 15 (01) 45-51
  • 5 Alzahrani MA, Dean CM, Ada L. et al. Mood and balance are associated with free-living physical activity of people after stroke residing in the community. Stroke Research and Treatment. 2012 DOI: doi:10.1155/2012/470648
  • 6 Bohannon RW, Walsh S. Association of paretic lower extremity muscle strength and standing balance with stair-climbing ability in patients with stroke. Journal of Stroke and Cerebrovascular Diseases 1991; 1: 129-133
  • 7 Buchner DM, Larson EB, Wagner EH. et al. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing 1996; 25 (05) 386-391
  • 8 Canadian Stroke Network. Canadian best practice recommendations for stroke care. Section 5.3: Delivery of inpatient stroke rehabilitation. 4th ed.. 2013
  • 9 Canning C, Ada L, Adams R. et al. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clinical Rehabilitation 2004; 18: 300-308
  • 10 Dorsch S, Ada L, Canning CG. et al. The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: An observational study. Archives of Physical Medicine and Rehabilitation 2012; 93 (06) 1072-1076
  • 11 Dorsch S, Ada L, Canning CG. Lower limb strength is significantly impaired in all muscle groups ambulatory people with chronic stroke: A cross-sectional study. Archives of Physical Medicine and Rehabilitation 2016; 97 (04) 522-527
  • 12 Dorsch S, Ada L, Alloggia D. Progressive resistance training increases strength after stroke but this may not carry over to activity: A systematic review. Journal of Physiotherapy 2018; 64: 84-90
  • 13 English C, Hillier SL, Lynch EA. Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev 2017; 2: 6
  • 14 Giannini R, Perell K. Lower limb coordination during walking in subjects with post stroke hemiplegia vs. healthy control subjects. Clinical Kinesiology: Journal of the American Kinesiotherapy Association 2005; 59: 10
  • 15 Harris JE, Eng JJ, Miller WC. et al. A self-administered graded repetitive arm supplementary program (GRASP) improves arm function during inpatient stroke rehabilitation. Stroke 2009; 40: 2123-2128
  • 16 Hendrey G, Clark RA, Holland AE. et al. Feasibility of ballistic strength training in subacute stroke: A randomized, controlled, assessor-blinded pilot study. Archives of Physical Medicine and Rehabilitation 2018; 99 (12) 2430-2446
  • 17 Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Archives of Physical Medicine and Rehabilitation 2003; 84: 1185-1193
  • 18 Huang ZG, Feng YH, Li YH. et al. Systematic review and meta-analysis: Tai Chi for preventing falls in older adults. BMJ Open 2017; 7 (02) e013661
  • 19 Jones TM, Dean CM, Hush JM. et al. A systematic review of the efficacy of self-management programs for increasing physical activity in community-dwelling adults with acquired brain injury. Systematic Reviews 2015; 4: 51
  • 20 Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed.. McGraw-Hill; 2000
  • 21 Kuys S, Brauer S, Ada L. Higher-intensity treadmill walking during rehabilitation after stroke is feasible and not detrimental to walking pattern or quality: A pilot randomized trial. Clinical Rehabilitation 2011; 25: 316-326
  • 22 Kwakkel G, van Peppen R, Wagenaar RC. et al. Effects of augmented exercise therapy time after stroke: A meta-analysis. Stroke 2004; 35 (11) 2529-2539
  • 23 Kwan M, Hassett L, Ada L. et al. Relationship between lower limb coordination and walking speed after stroke: An observational study. Brazilian Journal of Physical Therapy 2019; 23 (06) 527-531
  • 24 Laver KE, Lange B, George S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2017; 11
  • 25 Lennon S, McKenna S, Jones F. Self management for people post stroke: A systematic review. Clinical Rehabilitation 2013; 27: 867-878
  • 26 Li GY, Wang W, Liu GL. et al. Effects of Tai Chi on balance and gait in stroke survivors: A systematic meta-analysis of randomized controlled trials. J Rehabil Med 2018; 50 (07) 582-588
  • 27 Logan PA, Gladman JRF, Avery A. et al. Randomised controlled trial of an occupational therapy intervention to increase outdoor mobility after stroke. Br Med J 2004; 329: 1372-1377
  • 28 Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke 2014; 45 (07) 2053-2058
  • 29 McLellan DL. Co-contraction and stretch reflexes in spasticity during treatment with baclofen. Journal of Neurology, Neurosurgery, and Psychiatry 1977; 40: 30-38
  • 30 Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2017; 8: CD002840
  • 31 Nadeau S, Arsenault AB, Gravel D. et al. Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999; 78: 123-130
  • 32 Nascimento LR, Michaelsen SM, Ada L. et al. Cyclical electrical stimulation increases strength and improves activity after stroke: A systematic review. Journal of Physiotherapy 2014; 60: 97-101
  • 33 Nascimento LR, de Oliveira CQ, Ada L. et al. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: A systematic review. J Physiother 2015; 61: 10-15
  • 34 National Stroke Foundation. Clinical Guidelines for Stroke Management Australia. 2017
  • 35 Neilson PD, McCaughey J. Self-regulation of spasm and spasticity in cerebral palsy. Journal of Neurology, Neurosurgery, and Psychiatry 1982; 45: 320-330
  • 36 Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke 1995; 26 (06) 982-989
  • 37 Polese J, Ada L, Teixeira-Salmela LF. Relationship between oxygen cost of walking and level of walking disability after stroke: An experimental study. Physiotherapy Research International. 2018 23. (1)
  • 38 Preston E, Ada L, Dean CM. et al. What is the probability of patients who are non-ambulatory after stroke regaining independent walking? A systematic review. Int J Stroke 2011; 6: 531-540
  • 39 Schneider EJ, Lannin NA, Ada L. et al. Increasing the amount of usual rehabilitation improves activity after stroke: A systematic review. Journal of Physiotherapy 2016; 62: 182-187
  • 40 Scottish Intercollegiate Guidelines Network. Management of patients with stroke: Rehabilitation, prevention and management of complications, and discharge planning. A national clinical guideline. The United Kingdom: 2010
  • 41 Scrivener K, Pocovi N, Jones T. et al. Observations of activity levels in a purpose-built, inpatient, rehabilitation facility. HERD 2019; 12 (04) 26-38
  • 42 Smith MC, Barber PA, Stinear CM. The TWIST algorithm predicts time to walking independently after stroke. Neurorehabilitation and Neural Repair 2017; 31 (10/11) 955-964
  • 43 Stinear CM, Barber PA, Petoe M. et al. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 2012; 135: 2527-2535
  • 44 Stinear CM, Byblow WD, Ackerley SJ. et al. PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Annals of Clinical and Translational Neurology 2017; a 4 (11) 811-820
  • 45 Stinear CM, Byblow WD, Ackerley SJ. et al. Predicting recovery potential for individual stroke patients increases rehabilitation efficiency. Stroke 2017; b 48: 1011-1019
  • 46 Tanaka S, Hachisuka K, Ogata H. Muscle strength of trunk flexion-extension in post-stroke hemiplegic patients. American Journal of Physical Medicine & Rehabilitation 1998; 77 (04) 288-290
  • 47 Veerbeek JM, Koolstra M, Ket JC. et al. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: A meta-analysis. Stroke 2011; 42 (11) 3311-3315