Der Nuklearmediziner 2020; 43(02): 167-183
DOI: 10.1055/a-0959-0635
Kopf-Hals-Tumore
© Georg Thieme Verlag KG Stuttgart · New York

PET/CT in der Strahlentherapie

PET/CT in radiotherapy
Robert Krempien
1   Klinik für Strahlentherapie, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin
,
Marc Münter
2   Abt. Radioonkologie und Strahlentherapie, Radioonkologie und Strahlentherapie Klinikum der Landeshauptstadt Stuttgart, Katharinenhospital, Kriegsbergstraße 60, 70174 Stuttgart
,
Stefan Dresel
3   Klinik für Nuklearmedizin, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
28 May 2020 (online)

Zusammenfassung

Das therapeutische Konzept einer suffizienten Strahlentherapie ist die Applikation einer ausreichend hohen therapeutischen Dosis im anvisierten Zielvolumen bei gleichzeitiger maximaler Schonung des umgebenden Normalgewebes. Es zeigt sich jedoch mehr und mehr, dass die traditionellen Anatomie-basierten Schnittbildgebungen (CT, MRT) die Tumorausdehnung häufig über- oder unterbewerten. Seit der Einführung der Positronen-Emissions-Tomografie (PET) in die klinische Routine wird angestrebt, die morphologische Basis der Bestrahlungsplanungs-CT durch die funktionellen Informationen der PET zu ergänzen und somit zu einer biologisch funktionellen Bestrahlungsplanung zu gelangen. Durch eine präzise Koregistrierung der funktionellen, metabolischen Daten mit den für die Bestrahlungsplanung erforderlichen anatomischen Informationen aus den CT-Aufnahmen kommt die PET/CT-Technik den Anforderungen der Hochpräzisionsbestrahlung entscheidend entgegen. Klinische Studien bei nahezu allen Tumorentitäten zeigen einen erheblichen Einfluss der PET/CT auf die Konturierung der Zielvolumina. Erhebliche Änderungen zeigen sich in 20 % bis über 50 % der Fälle gegenüber rein CT-basierten Konturierungen. Im Folgenden haben wir die wesentlichen Daten in Bezug auf Staging und Zielvolumendefinition und soweit vorhanden auf Therapieansprechen zusammengefasst.

Abstract

The therapeutic concept of enough radiation therapy is the application of a sufficiently high therapeutic dose in the target volume with simultaneous maximum protection of the surrounding normal tissue. However, it is becoming increasingly apparent that traditional anatomy-based cross-sectional imaging (CT, MRI) often over- or underestimates tumor size. Since the introduction of positron emission tomography (PET) into the clinical routine, the aim is to supplement the morphological basis of the radiation planning CT with the functional information of the PET and thus to aim a biologically functional radiation planning. By precisely correlating the functional metabolic data with the anatomical information from the CT images required for treatment planning, the PET/CT technique decisively accommodates the requirements of high-precision irradiation. Clinical studies in almost all tumor entities show a significant influence of PET/CT on the contouring of the target volumes. Substantial changes occur in 20 % to more than 50 % of the cases compared to purely CT-based contouring. In the following, we summarized the main data related to staging and target volume definition and, if available, response to therapy.

 
  • Literatur

  • 1 Cox JD, Azarnia N, Byhardt RW. et al. A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 1990; 8: 1543-1555
  • 2 Hanks GE, Hanlon AL, Schultheiss TE. et al. Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. Int J Radiat Oncol Biol Phys 1998; 41: 501-510
  • 3 Okunieff P, Morgan D, Niemierko A. et al. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 1995; 32: 1227-37
  • 4 Willner J, Baier K, Caragiani E. et al. Dose, volume, and tumor control prediction in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2002; 52: 382-389
  • 5 Onishi H, Araki T, Shirato H. et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 2004; 101: 1623-1631
  • 6 Holthusen H. Erfahrungen über die Verträglichkeitsgrenzen für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 1936; 57: 254-268
  • 7 Garg MK, Glanzman J, Kalnicki S. The evolving role of positron emission tomography-computed tomography in organ-preserving treatment of head and neck cancer. Semin Nucl Med 2012; 42: 320-327
  • 8 Bentzen SM, Gregoire V. Molecular imaging-based dose painting: A novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21: 101-110
  • 9 Differding S, Sterpin E, Hermand N. et al. Radiation dose escalation based on FDG-PET driven dose painting by numbers in oropharyngeal squamous cell carcinoma: A dosimetric comparison between TomoTherapy-HA and RapidArc. Radiat Oncol 2017; 12: 59
  • 10 McKay MJ, Taubman KL, Foroudi F. et al. Molecular Imaging Using PET/CT for Radiation Therapy Planning for Adult Cancers: Current Status and Expanding Applications. Int J Radiat Oncol Biol Phys 2018; 102: 783-791
  • 11 van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol 2004; 14: 52-64
  • 12 Grégoire V, Mackie TR. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 2011; 15: 555-559
  • 13 Ling CC, Humm J, Larson S. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000; 47: 551-560
  • 14 Bentzen SM, Gregoire V. Molecular imaging-based dose painting: A novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21: 101-110
  • 15 McKay MJ, Taubman KL, Foroudi F. et al. Molecular Imaging Using PET/CT for Radiation Therapy Planning for Adult Cancers: Current Status and Expanding Applications. Int J Radiat Oncol Biol Phys 2018; 102: 783-791
  • 16 Popp I, Weber WA, Combs SE. et al. Neuroimaging for Radiation Therapy of Brain Tumors. Top Magn Reson Imaging 2019; 28: 63-71
  • 17 Sharma P, Mukherjee A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: An overview. Ann Transl Med 2016; 4: 53-59
  • 18 Schütze C, Bergmann R, Yaromina A. et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol 2007; 83: 311-315
  • 19 Wüllrich K, Gabrys D, Hofheinz F. et al. Bewertung der FDG-Aufnahme in Abhängigkeit von Proliferation und Hypoxie: Untersuchung in 2humanen Tumormodellen auf Nacktmäusen mit PET, Autoradiographie und funktioneller Histologie. Proceedings des 16. Symposiums Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Dresden, 01.–03. März 2007. 41-45
  • 20 Eschmann SM, Paulsen F, Reimold M. et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J NuclMed 2005; 46: 253-260
  • 21 Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 2000; 57: 39-43
  • 22 Rischin D, Hicks RJ, Fisher R. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study98.02. J Clin Oncol 2006; 24: 2098-2104
  • 23 Baumann R, Depping R, Delaperriere M. et al. Targeting hypoxia to overcome radiation resistance in head & neck cancers: Real challenge or clinical fairytale?. Expert Rev Anticancer Ther 2016; 6: 751-758
  • 24 Syed R, Bomanji JB, Nagabhushan N. et al. Impact of combined (18)F-FDG PET/CT in head and neck tumours. Brit J Cancer 2005; 92: 1046-1050
  • 25 Grégoire V, Thorwarth D, Lee JA. Molecular imaging-guided radiotherapy for the treatment of head-and-neck squamous cell carcinoma: Does it fulfill the promises?. Semin Radiat Oncol 2018; 28: 35-45
  • 26 Branstetter BFIV, Blodgett TM, Zimmer LA. et al. Head and neck malignancy: is PET/CT more accurate than PET or CT alone?. Radiology 2005; 235: 580-586
  • 27 Schoder H, Yeung HW, Gonen M. et al. Head and neck cancer: clinical usefulness and accurancy of PET/CT image fusion. Radiology 2004; 231: 65-72
  • 28 Menda Y, Graham MM. Update on 18F-fluorodeoxyglucose/positron emission tomography and positron emission tomography/computed tomography imaging of squamous head and neck cancers. Semin Nucl Med 2005; 35: 214-219
  • 29 Leclerc M, Lartigau E, Lacornerie T. et al. Primary tumor delineation based on (18)FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol 2015; 116: 87-93
  • 30 Heron DE, Andrade RS, Flickinger JC. et al. Hybrid PET-CT simulation for radiation treatment planning in head and neck cancers : a brief technical report. Int J Radiat Oncol Biol Phys 2004; 60: 1419-1424
  • 31 Garg MK, Glanzman J, Kalnicki S. The evolving role of positron emission tomography-computed tomography in organ-preserving treatment of head and neck cancer. Semin Nucl Med 2012; 42: 320-327
  • 32 Hyde NC, Prvulovich E, Newman L. et al. A new approach to pre-treatment assessment of the N0 neck in oral squamous cell carcinoma: the role of sentine node biopsy and positron emission tomography. Oral Oncol 2003; 39: 350-360
  • 33 Stoeckli SJ, Steinert H, Pfaltz M. et al. Is there a role for positron emission tomography with 18F-fluorodeoxyglucose in the initial staging of nodal negative oral and oropharyngeal squamous cell carcinoma?. Head Neck 2002; 24: 345-349
  • 34 Stoeckli SJ, Mosna-Firlejczyk K, Goerres GW. Lymph node metastasis of squamous cell carcinoma from an unknown primary: impact of positron emission tomography. Eur J Nucl Med Mol Imaging 2003; 30: 411-416
  • 35 Civantos FJ, Gomez C, Duque C. et al. Sentinel node biopsy in oral cavity cancer : correlation with PET scan and immunohistochemistry. Head Neck 2003; 25: 1-9
  • 36 Schmid DT, Stoeckli SJ, Bandhauer F. et al. Impact of positron emission tomography on the initial staging and therapy in locoregional advanced squamous cell carcinoma of the head and neck. Laryngoscope 2003; 113: 888-891
  • 37 Koshy M, Paulino AC, Howell R. et al. F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck 2005; 27: 494-502
  • 38 Paulino AC, Koshy M, Howell R. et al. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005; 61: 1385-1392
  • 39 Schechter NR, Gillenwater AM, Byers RM. et al. Can positron emission tomography improve the quality of care for head-and-neck cancer patients?. Int J Radiat Oncol Biol Phys 2001; 51: 4-9
  • 40 Wong RJ, Lin DT, Schoder H. et al. Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002; 20: 4199-4208
  • 41 Lowe VJ, Boyd JH, Dunphy FR. et al. Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 2000; 18: 651-658
  • 42 Paulino AC, Thorstad WL, Fox T. Role of fusion in radiotherapy treatment planning. Semin Nucl Med 2003; 33: 238-243
  • 43 Andrade RS, Heron DE, Degirmenci B. et al. Posttreatment assessment of response using FDG-PET/CT for patients treated with definitve radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys 2006; 65: 1315-1322
  • 44 Andrade RS, Heron DE, Filho PAA. et al. Assessment of response using Fluorodeoxyglucose F-18 positron emission tomography and after definitive radiation therapy : preliminary results. Proc AHNS 2006, Archives of Neck Surg 2006; 132: 879-880
  • 45 Koike I, Ohmura M, Hata M. et al. FDG-PET scanning alter radiation can predict tumor regrowth three months later. Int J Radiat Oncol Biol Phys 2003; 57: 1231-1238
  • 46 Gould MK, Maclean CC, Kuschner WG. et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001; 285: 914-924
  • 47 Gould MK, Kuschner WG, Rydzak CE. et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer. A meta-analysis. Ann Intern Med 2003; 139: 879-892
  • 48 Schmuecking M, Schneider CP, Soeldner J. et al. What is the role of F-18 PET within randomized multicenter clinical trials for multimodality treatment of non-small cell lung cancer stage III?. Proc ASCO J Clin Oncol 2005; 23: 7182
  • 49 Bradley J, Thorstad WL, Mutic S. et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59: 78-86
  • 50 Lavrenkov K, Partridge M, Cook G. et al. Positron emission tomography for target volume definition in the treatment of non-small cell lung cancer. Radiother Oncol 2005; 77: 1-4
  • 51 Ashamalla H, Rafla S, Parikh K. et al. The contribution of integrated PET-CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005; 63: 1016-1023
  • 52 Caldwell CB, Mah K, Ung YC. et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001; 51: 923-931
  • 53 Pieterman RM, Que TH, Elsinga PH. et al. Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 2002; 43: 167-172
  • 54 Pieterman RM, van Putten JW, Meuzelaar JJ. et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000; 343: 254-261
  • 55 De Ruysscher D, Wanders S, Minken A. et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005; 77: 5-10
  • 56 Holloway CL, Robinson D, Murray B. et al. Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer. Radiother Oncol 2004; 73: 285-287
  • 57 De Ruysscher D, Wanders S, van Haren E. et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with nonsmall-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2005; 62: 988-994
  • 58 Rosenzweig KE, Sura S, Jackson A. et al. Involved-Field Radiation Therapy for Inoperable Non Small-Cell Lung Cancer. J Clin Oncol 2007; 25: 5557-5561
  • 59 Yuan S, Yu J, Sub X. et al. Three-dimensional conformal involved-field radiotherapy for stage III non-small cell lung cancer. Journal of Clinical Oncology 2006; 24: 7044
  • 60 Griesinger F, Pverbeck T, Dorge B. et al. Phase III induction therapy with docetaxel and carboplatin in NSCLC IIIA/IIIIB: FDG-PET response predicts overall and disease-free survival. 2005 Proc ASCO Annual Meeting Proceedings. J Clin Oncol 2005; 23: 7184
  • 61 Lardinois D, Weder W, Hany TF. et al. Staging of non-small-cell lung cancer with integradet positron-emission tomography and computed tomography. N Engl J Med 2003; 348: 2500-2507
  • 62 Hallqvist A, Alverbratt C, Strandell A. et al. Positron emission tomography and computed tomographic imaging (PET/CT) for dose planning purposes of thoracic radiation with curative intent in lung cancer patients: A systematic review and meta-analysis. Radiother Oncol 2017; 123: 71-77
  • 63 Ilson DH. Cancer of the gastroesophageal junction: combined modality therapy. Surg Oncol Clin N Am 2006; 15: 803-824
  • 64 Bar-Shalom R, Guralnik L, Tsalic M. et al. The additional value of PET/CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging 2005; 32: 918-924
  • 65 Kato H, Miyazaki T, Nakajima M. et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 2005; 103: 148-156
  • 66 Moureau-Zabotto L, Touboul E, Lerouge D. et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005; 63: 340-345
  • 67 Gondi V, Bradley K, Mehta M. et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 67: 187-195
  • 68 Foley KG, Morgan C, Roberts SA. et al. Impact of positron emission tomography and endoscopic ultrasound length of disease difference on treatment planning in patients with oesophageal cancer. Clin Oncol (R Coll Radiol) 2017; 29: 760-766
  • 69 Vriez O, Haustermans K, De Wever W. et al. Is there a role for FDG-PET in radiotherapy planning in esophageal carcinoma ?. Radiother Oncol 2004; 73: 269-275
  • 70 Leong TEC, Yuen K. A prospective study to evaluate the impact of coregistered PET/CT images on radiotherapy treatment planning for esophageal cancer [Abstract ASTRO 2004]. Int J Radiat Oncol Biol Phys 2004; 60: 139-140
  • 71 Konski A, Doss M, Milestone B. et al. The integration of 18-fluorodeoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005; 61: 1123-1128
  • 72 Munden RF, Macapinlac HA, Erasmus JJ. Esophageal cancer: the role of integradet CT-PET in initial staging and response assessment after preoperative therapy. J Thorac Imaging 2006; 21: 137-145
  • 73 Brink I, Hentschel M, Bley TA. et al. Effects of neoadjuvant radiochemotherapy on 18F-FE-PET in esophageal carcinoma. Eur J Surg Oncol 2004; 30: 544-550
  • 74 Bruzzi JF, Swisher SG, Truong MT. et al. Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 2007; 109: 125-134
  • 75 Swisher SG, Maisch M, Erasmus JJ. et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004; 78: 1152-1160
  • 76 Erasmus JJ, Munden RF, Troung MT. et al. Preoperative chemo-radiation-induced ulceration in patients with esophageal cancer: a confounding factor in tumor response assessment in integrated computed tomographic-positron emission tomographic imaging. J Thorac Oncol 2006; 1: 478-486
  • 77 Duong CP, Hicks RJ, Weih L. et al. FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging 2006; 33: 770-778
  • 78 Kalff V, Duong C, Drummond EG. et al. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 2006; 47: 14-22
  • 79 van Stiphout RG, Valentini V, Buijsen J. et al. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: A multicentric prospective study with external validation. Radiother Oncol 2014; 113: 215-222
  • 80 Pecori B, Lastoria S, Caraco' C. et al. Sequential PET/CT with [18F]-FDG predicts pathological tumor response to preoperative short course radiotherapy with delayed surgery in patients with locally advanced rectal cancer using logistic regression analysis. PLoS One 2017; 12: e0169462
  • 81 Buijsen J, van den Bogaard J, Janssen MH. et al. FDG-PET provides the best correlation with the tumor specimen compared to MRI and CT in rectal cancer. Radiother Oncol 2011; 98: 270-276
  • 82 Mahmud A, Poon R, Jonker D. PET imaging in anal canal cancer: A systematic review and meta-analysis. Br J Radiol 2017; 90: 20170370
  • 83 Schneider DA, Akhurst TJ, Ngan SY. et al. Relative value of restaging MRI, CT, and FDG-PET scan after preoperative chemoradiation for rectal cancer. Dis Colon Rectum 2016; 59: 179-186
  • 84 Jones MP, Hruby G, Metser U. et al. FDG-PET parameters predict for recurrence in anal cancer - results from a prospective, multicentre clinical trial. Radiat Oncol 2019; 14: 140
  • 85 N.C.C.N. Clinical Practice guidelines in oncology (NCCN guidelines). Anal. Carcinoma (2017) Version 2. Im Internet: www2.tri-kobe.org/nccn/guideline/colorectal/english/anal.pdf
  • 86 Grigsby PW, Siegel BA, Dehdashti F. et al. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 2004; 22: 2167-2171
  • 87 Horowitz NS, Dehdashti F, Herzog TJ. et al. Prospective evaluation of FDG PET for detecting pelvic para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 2004; 95: 546-551
  • 88 Rotman M, Pajak TF, Choi K. et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79-20. JAMA 1995; 274: 387-393
  • 89 Eifel PJ, Winter K, Morris M. et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial(RTOG) 90-01. J Clin Oncol 2004; 22: 872-880
  • 90 Grigsby PW, Heydon K, Mutch DG. et al. Long-term follow-up of RTOG 92-10: cervical cancer with positive para-aorctic lymph nodes. Int J Radiat Oncol Biol Phys 2001; 51: 982-987
  • 91 Gerszten K, Colonello K, Heron DE. et al. Feasibility of concurrent cisplatin and extended field radiation therapy (EFRT) using intensitymodulated radiotherapy (IMRT) for carcinoma of the cervix. Gyncol Oncol 2006; 102: 182-188
  • 92 Beriwal SGN, Heron DE. et al. Early clinical outcome with concurrent chemotherapy and extended-field intensity-modulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 2007; 68: 166-171
  • 93 Esthappan J, Mutic S, Malyapa RS. et al. Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys 2004; 58: 1289-1297
  • 94 Ahmed RS, Kim RY, Duan J. et al. IMRT does escalation for positive para aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int J Radiat Oncol Biol Phys 2004; 60: 505-512
  • 95 Fleming S, Cooper RA, Swift SE. et al. Clinical impact of FDG PET-CT on the management of patients with locally advanced cervical carcinoma. Clin Radiol 2014; 69: 1235-1243
  • 96 Lin LL, Mutic S, Low DA. et al. Adaptive brachytherapie treatment planning for cervical cancer using FDG-PET. Int J Radiat Oncol Biol Phys 2007; 67: 91-96
  • 97 Grigsby PW, Siegel BA, Dehdashti F. et al. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 2004; 22: 2167-2171
  • 98 Chung HH, Kim SK, Kim TH. et al. Clinical impact of FDG-PET imaging in post-therapy surveillance of uterine cervical cancer: from diagnosis to prognosis. Gyncol Oncol 2006; 103: 165-170
  • 99 Schiller K, Sauter K, Dewes S. et al. Patterns of failure after radical prostatectomy in prostate cancerdImplications for radiation therapy planning after 68Ga-PSMA-PET imaging. Eur J Nucl Med Mol Imaging 2017; 44: 1656-1662
  • 100 Habl G, Sauter K, Schiller K. et al. 68Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate 2017; 77: 920-927
  • 101 Schiller K, Sauter K, Dewes S. et al. Patterns of failure after radical prostatectomy in prostate cancerdImplications for radiation therapy planning after 68Ga-PSMA-PET imaging. Eur J Nucl Med Mol Imaging 2017; 44: 1656-1662
  • 102 Habl G, Sauter K, Schiller K. et al. 68Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate 2017; 77: 920-927
  • 103 Hernandez-Maraver D, Hernandez-Navarro F, Gomez-Leon N. et al. Positron emission tomography/computed tomography: diagnostic accuracy in lymphoma. Br J Haematol 2006; 135: 293-302
  • 104 Hutchings M, Loft A, Hansen M. et al. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early stage Hodgkin Lymphoma. Eur J Haematol 2007; 783: 206-212
  • 105 Kasanom YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted theory of lymphoma. J Nucl Med 2007; 48: 19-27
  • 106 Yahalom J. Transformation in the use of radiation therapy of Hodgkin lymphoma: new concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur J Haematol 2005; 66: 90-97
  • 107 Girinsky T, van der Maazen R, Specht L. et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin Lymphoma: concepts and guidelines. Radiother Oncol 2006; 79: 2770-2777
  • 108 Munker R, Glass J, Griffeth LK. et al. Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol 2004; 15: 1699-1704
  • 109 Thornton AF, Sandler HM, Haken RKT. et al. The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992; 24: 767-775
  • 110 Massey V, Wallner KE. Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 1990; 18: 395-398
  • 111 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with [ 11C]Lmethionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170
  • 112 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481
  • 113 Delbeke D, Meyerowitz C, Lapidus RL. et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1995; 195: 47-52
  • 114 Vander Borght T, Asenbaum S, Bartenstein P. European Association of Nuclear Medicine (EANM). et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006; 33: 1374-1380
  • 115 Braun V, Dempf S, Weller R. et al. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir 2002; 144: 777-782
  • 116 Herholz K, Hölzer T, Bauer B. et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50: 1316-1322
  • 117 Bergström M, Collins VP, Ehrin E. et al. Discrepancies in brain tumor extent as shown by computed tomography an positron emission tomography using [68 Ga] EDTA, [ 11C] glucose, and [ 11C] methionine. J Comput Assist Tomogr 1983; 7: 1062-1066
  • 118 Mosskin MEK, Hindmarsh T, Holst H. et al. Positron emission tomography compared withmagnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225-232
  • 119 Ogawa T, Shishido F, Kanno I. et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993; 186: 45-53
  • 120 Weber WA, Wester HJ, Grosu AL. et al. O-(2-[ 18F]Fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549
  • 121 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[ 18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 122 Rachinger W, Goetz C, Pöpperl G. et al. Positron emission tomography with O-(2-[18F] fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511
  • 123 Beuthien-Baumann B, Bredow J, Burchert W. et al. 3-0-Methyl-6-(18)F]fluoro-L-DOPA and its evaluation in brain tumor imaging. Eur J Nucl Med Mol Imaging 2003; 30: 1004-1008
  • 124 Grosu AL, Lachner R, Wiedenmann N. et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 2003; 56: 1450-1463
  • 125 Grosu AL, Weber WA, Riedel E. et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 64-74
  • 126 Grosu AL, Weber WA, Franz M. et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT) /CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519
  • 127 Albert NL, Weller M, Suchorska B. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016; 18: 1199-1208
  • 128 Grosu AL, Weber WA, Astner ST. et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006; 66: 339-344
  • 129 Grosu AL, Weber WA, Astner ST. et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy?. Int J Radiat Oncol Biol Phys 2006; 66: 339-344
  • 130 Henze M, Schuhmacher J, Hipp P. et al. PET imaging of somatostatin receptors using [68 GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001; 42: 1053-1056
  • 131 Graf R, Nyuyki F, Steffen IG. et al. Contribution of 68Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy. Int J Radiat Oncol Biol Phys 2013; 85: 68-73
  • 132 Rachinger W, Stoecklein VM, Terpolilli NA. et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 2015; 56: 347-353
  • 133 Milker-Zabel S, Zabel-du Bois A, Henze M. et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68 Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006; 65: 222-227
  • 134 Stade F, Dittmar JO, Jäkel O. et al. Influence of 68Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy. Radiat Oncol 2018; 13: 58
  • 135 Thorwarth D. Functional imaging for radiotherapy treatment planning: Current status and future directions—A review. Br J Radiol 2015; DOI: 10.1259/bjr.20150056.