Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2020; 30(02): 86-94
DOI: 10.1055/a-0917-4604
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

The effects of Virtual Reality Training with Upper Limb Sensory Exercise Stimulation on the AROM of Upper Limb Joints, Function, and Concentration in Chronic Stroke Patients

Wirkung von VR-Training (Virtual Reality) mit sensorischen Stimulationsübungen der oberen Extremitäten auf Beweglichkeit und Funktion der Gelenke der oberen Extremitäten sowie auf die Konzentrationsfähigkeit bei chronischen Schlaganfallpatienten
Dong Hoon Kim
1   Bundang Jesaeng Hospital, RM, Seongnam, Korea (the Republic of)
,
Kyung-Hun Kim
2   Physical Therapy, Gimcheon University, Gimcheon, Korea (the Republic of)
,
Suk-Min Lee
3   Physical Therapy, Sahmyook University, Nowon-gu, Korea (the Republic of)
› Author Affiliations
Further Information

Publication History

received 21 February 2019

accepted 29 April 2019

Publication Date:
16 July 2019 (online)

Abstract

Objective We investigated the effect of upper limb sensory stimulation and virtual reality rehabilitation (SMVR) on upper extremity active joint angle, function and cognitive ability in chronic stroke patients.

Methods A total of 30 patients were randomly divided into SMVR group and CON group. SMVR group was performed 60 min three times a week for 8 weeks in upper limb sensory stimulation and robot virtual reality rehabilitation. CON group performed conservative treatment and peripheral joint movement for 60 min. The upper limb function was measured by the Jebsen-Taylor hand function test (JTT) and the cognitive ability test was performed by the Stroop test (ST) and Trail making test (TMT).

Results There was a significant difference (P<0.05) between before and after training in both groups, and SMVR group showed significant improvement in both groups.

Conclusions In this study, we confirmed that robot virtual reality training in combination with limb motion stimulation for stroke patients positively affects the angle, function, and concentration of upper extremity active joints in chronic stroke patients.

Zusammenfassung

Ziel: Wir untersuchten die Wirkung von sensorischen Stimulationsübungen und VR-Training (SMVR) der oberen Extremitäten auf Bewegungsausmaß und Funktion der Gelenke der oberen Extremitäten sowie auf die kognitiven Fähigkeiten von chronischen Schlaganfallpatienten.

Methoden: Insgesamt 30 Patienten nahmen teil und wurden zufällig in eine SMVR-Gruppe und eine Kontrollgruppe aufgeteilt. Die Patienten der SMVR-Gruppe trainierten 8 Wochen lang, dreimal pro Woche je 60 min. mit sensorischer Stimulation der oberen Extremitäten und robotergestütztem VR‑Training. Die Patienten der Kontrollgruppe erhielten eine 60-minütige konservative Behandlung und Bewegung der peripheren Gelenke. Die Funktion der oberen Extremitäten wurde mit dem Jebsen-Taylor Handfunktionstest (JTT) gemessen, die kognitiven Fähigkeiten mit dem Stroop-Test (ST) und dem Trail‑making Test (TMT)

Ergebnisse: In beiden Gruppen konnte ein signifikanter Unterschied (P < 0,05) vor und nach dem Training festgestellt werden; die SMVR-Gruppe zeigte eine signifikante Verbesserung in beiden Verfahren.

Schlussfolgerung: Mit dieser Studie konnten wir bestätigen, dass robotergestütztes VR‑Training in Verbindung mit Bewegungsstimulation der Extremitäten bei Schlaganfallpatienten das Bewegungsausmaß und die Funktion der Gelenke der oberen Extremitäten sowie die Konzentrationsfähigkeit bei chronischen Schlaganfallpatienten positiv beeinflusst.

 
  • References

  • 1 Mayo NE, Wood-Dauphinee S, Cote R. et al. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil 2002; 83: 1035-1042
  • 2 Lawrence ES, Coshall C, Dundas R. et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 2001; 32: 1279-1284
  • 3 Carey LM. Tactile and proprioceptive discrimination loss after stroke: training effects and quantitative measurement (dissertation). Melbourne, Australia: LaTrobe University; 1993
  • 4 Wadell I, Kusoffskv A, Nilsson BY. A follow-up study of stroke patients 5-6 years after their brain infarct. Int J Rehabil Res 1987; 10 (Suppl. 05) 103-110
  • 5 Bonan IV, Colle FM, Guichard JP. et al. Reliance on visual information after stroke. Part I: Balance on dynamic posturography. Arch Phys Med Rehabil 2004; 85: 268-273
  • 6 Bonan IV, Yelnik AP, Colle FM. et al. Reliance on visual information after stroke. Part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2004; 85: 274-278
  • 7 Strum JW, Dewey HM, Donnan GA. et al. Handicap after stroke: How does it relate to disability, perception of recovery, and stroke subtype. Stroke 2002; 33: 762-768
  • 8 Cirstea MC, Ptito A, Levin MF. Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Experimental Brain Research 2003; 152: 476-488
  • 9 Kang YJ, Park HK, Kim HJ. et al. Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm. Journal of Neuro Engineering and Rehabilitation 2012; 9: 71
  • 10 Shumway-Cook A, Woollacott M. Motor control. 3th ed Philadelphia: Lippincott Williams & Wilkins; 2007
  • 11 Karni A, Meyer G, Jezzard P. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995; 14: 155-158
  • 12 Plautz EJ, Millken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adults quirrel monkeys: Role of use versus learning. Neurobiol Learn Mem 2000; 74: 27-55
  • 13 Rossini PM, Pauri F. Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor area ‘plastic’ reorganization. BrainResRev 2000; 33: 131-154
  • 14 Kim Dong-Hoon, Kim Kyung-Hun, Lee Suk-Min. Effects of visual restriction and unstable base dual-task training on balance and concentration ability in persons with stroke. Phys Ther Rehabil Sci 2016; 5: 193-197
  • 15 Quaney BM, He J, Timberlake G. et al. Visuomotor training improves stroke-related ipsilesional upper extremity impairments. Neurorehabilitation and neural repair 2010; 24: 52-61
  • 16 de Diego Cristina, Puig Silvia, Navarro Xavier. A sensorimotor stimulation program for rehabilitation of chronic stroke patients. Restorative Neurology and Neuroscience 2013; 31: 361-371
  • 17 Colombo R, Pisano F, Micera S. Assessing mechanism of recovery during robot-assisted neurorehabilitation of the upper limb. Neurorehabil NeuralRepair 2008; 22: 50-63
  • 18 Merians AS, Tunic E, Adamovich SV. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Studies in health technology and informatics 2009; 145: 109-125
  • 19 Kwakkel G, van Peppen R, Wagenaar RC. et al. Effects of augmented exercise therapy time after stroke: A Meta analysis. Stroke; a journal of Cerebral Circulation 2004; 35: 2529-2539
  • 20 Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-1386
  • 21 Rizzo AA, Buckwalter G, Neumann U. et al. Basic issues in the application of virtual reality for the assessment and rehabilitation of cognitive impairments and functional disabilities. CyberPsychol Behav 1998; 1: 59-78
  • 22 Barcala L, Grecco LA, Colella F. et al. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial. J Phys Ther Sci 2013; 25: 1027-1032
  • 23 Cunningham D, Krishack M. Virtual reality: a wholistic approach to rehabilitation. Stud Health Technol Inform 1999; 62: 90-93
  • 24 Tong Z. Virtual Reality in Neurorehabilitation. Int J Neurorehabilitation 2016; 3: 1-2
  • 25 Levis MF, Knaut LA, Magdalon EC. et al. Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis. Studies in helth technology and informatics 2009; 145: 94-108
  • 26 Rizzolatti G, Fadiga L, Foqassi L. et al. Resonance behaviors and mirror neurons. Archives Italiennes de Biologie 1999; 137: 85-100
  • 27 Shin JH, Kim MY, Lee JY. et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil 2016; 13-17
  • 28 Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-1386
  • 29 Smania N, Montagnana B, Faccioli S. et al. Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Arch Phys Med Rehabil 2003; 84: 1692-1702
  • 30 Boggio PS, Castro LO, Savagim EA. et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters 2006; 404: 232-236
  • 31 Goethals I, Audenaert K, Jacobs F. et al. Cognitive neuroactivation using SPECT and the Stroop Colored Word Test in patient with diffuse brain injury. J Neurotrauma 2004; 21: 1059-1069
  • 32 Strauss GP, Allen DN, Jorgensen ML. et al. Test-retest reliability of standard and emotional stroop tasks: an investigation of color-word and picture-word versions. Assessment 2005; 12: 330-337
  • 33 Radford KA, Lincoln NB. Concurrent validity of the stroke drivers screening assessment. Arch Phys Med Rehabil 2004; 85: 324-328
  • 34 Leininger BE, Gramling SE, Farrell AD. et al. Neuropsychological deficits in symptomatic minor head injury patients after concussion and mild concussion. J Neurol Neurosurg Psychiatry 1990; 53: 293-296
  • 35 Cangoz B, Karakoc E, Selekler K. Trail Making Test: normative data for Turkish elderly population by age, sex and education. J Neurol Sci 2009; 283: 73-78
  • 36 Rose FD, Brooks BM, Attree EA. et al. A preliminary investigation into the use of virtual environments in memory retraining after vascular brain injury: indication for future strategy?. Disabil Rehabil 1999; 21: 548-554
  • 37 Baram Y, Ahron-Peretz J, Lenger R. Virtual reality feedback for gait improment in patients with idiopathic senile gait disorders and patients with history of stroke. Journal of the American Geriatrics Society 2010; 58: 191-192 Schultheis, M.T., Himelstein, J., & Rizzo, A. A. Virtual reality and neuropsychology: Upgrading the current tools. J Head Trauma Rehabil 2002; 17:378-394
  • 38 Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress?. Journal of Rehabil Medicine 2009; 41: 1003-1100
  • 39 Scalha TB, Miyasaki E, Vieira Lima NM. et al. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke. Arq Neuropsiquiatr 2011; 69: 624-629
  • 40 Park J, Jung HT, Daneault JF. et al. Effectiveness of the RAPAEL Smart Board for Upper Limb Therapy in Stroke Survivors: A Pilot Controlled Trial. Conf Proc IEEE Eng Med Biol Soc 2018; 2018: 2466-2469
  • 41 Gobbo Massimiliano, Gaffurini Paolo, Vacchi Laura. et al. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors. BioMed Research International Volume 2017; 1-6  
  • 42 Kiper Paweł, Turolla Andrea, Piron Lamberto. et al. Virtual reality for stroke rehabilitation: assessment, training and the effect of virtual therapy. Medical Rehabilitation 2010; 14: 15-23
  • 43 Zimmerli L, Jacky M, Lunenburger L. et al. Increasing Patient Engagement During Virtual Reality-Based Motor Rehabilitation. Archives of physical medicine and rehabilitation 2013; 94: 1737-1746
  • 44 Mitchell L, Ziviani J, Oftedal S. et al. The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Developmental Medicine & Child Neurology 2012; 54: 667-671
  • 45 Combs SA, Finley MA, Henss M. et al. Effects of a repetitive gaming intervention on upper extremity impairments and function in persons with chronic stroke: a preliminary study. Disability & Rehabilitation 2012; 34: 1291-1298
  • 46 Masiero S, Celia A, Rosati G. et al. Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of physical Medicine and Rehabilitation 2007; 88: 142-149
  • 47 Shepherd RB. Exercise and training to optimize functional motor performance in stroke: driving neural reorganization?. Neural Plasticity 2001; 8: 121-129
  • 48 Yang NY, Park HS, Yoon TH. et al. Effectiveness of Motion-Based Virtual Reality Training (Joystim) on Cognitive Function and Activities of Daily Living in Patients with Stroke. Journal of Rehabilitation Welfare Engineering & Assistive Technology 2018; 12: 10-19
  • 49 Carr JH, Shepherd RB. Neurological Rehabilitation: Optimizing 2010
  • 50 Keith DC, Dahlberg C, Malec JF. et al. Evidence-based cognition rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation 2005; 86: 1681-1692