Diabetes aktuell 2019; 17(03): 114-117
DOI: 10.1055/a-0890-5730
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Bioartifizielle Bauchspeicheldrüse und Xenotransplantation

Betazellen aus dem Labor
Barbara Ludwig
1   Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik III und Zentrum für Regenerative Therapien (CRTD) Dresden an der Technischen Universität Dresden
2   Paul Langerhans Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.)
› Author Affiliations
Further Information

Publication History

Publication Date:
17 May 2019 (online)

Zusammenfassung

Es erscheint heute realistisch zu postulieren, dass die Behandlung des Diabetes mellitus im nächsten Jahrzehnt durch die kombinierte und konzertierte Anwendung von pharmakologischen, technologischen und Zell-basierten Behandlungsstrategien revolutioniert werden könnte. Entscheidend dafür ist die Interaktion von an den Grundlagen orientierten und klinisch tätigen Wissenschaftlern auf den Gebieten der Zellbiologie, Immunologie, Transplantationsmedizin und Diabetologie, aber auch von Materialwissenschaftlern und Biotechnologen. Das Feld der Insel-Verkapselung könnte hier einen wichtigen Beitrag leisten und zur Etablierung einer einfachen und sicheren Therapie zur funktionellen Heilung des Diabetes beitragen.

 
  • Literatur

  • 1 Choudhary P, Rickels MR, Senior PA. et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care 2015; 38 (06) 1016-1029 doi:10.2337/dc15-0090
  • 2 Gerber PA, Hochuli M, Benediktsdottir BD. et al. Islet transplantation as safe and efficacious method to restore glycemic control and to avoid severe hypoglycemia after donor organ failure in pancreas transplantation. Clinical transplantation 2018 32 (1) doi:10.1111/ctr.13153
  • 3 Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Advanced drug delivery reviews 2014; 67–68: 35-73
  • 4 Rafael E, Wernerson A, Arner P, Wu GS, Tibell A. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique. Cell Transplant 1999; 8 (03) 317-326
  • 5 Barkai U, Weir GC, Colton CK. et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 2013; 22 (08) 1463-1476 doi:10.3727/096368912X657341
  • 6 Ludwig B, Reichel A, Steffen A. et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A 2013; 110 (47) 19054-19058 doi:10.1073/pnas.1317561110
  • 7 Ludwig B, Ludwig S, Steffen A. et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc Natl Acad Sci U S A 2017; 114 (44) 11745-11750 doi:10.1073/pnas.1708420114
  • 8 Merani S, Toso C, Emamaullee J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. The British journal of surgery 2008; 95 (12) 1449-1461 doi:10.1002/bjs.6391
  • 9 de Vos P, Spasojevic M, Faas MM. Treatment of diabetes with encapsulated islets. Advances in experimental medicine and biology 2010; 670: 38-53
  • 10 Teramura Y, Iwata H. Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Advanced drug delivery reviews 2010; 62 (7–8) 827-840 doi:10.1016/j.addr.2010.01.005
  • 11 Calafiore R, Basta G. Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Advanced drug delivery reviews 2014; 67–68: 84-92 doi:10.1016/j.addr.2013.09.020
  • 12 Sawhney AS, Pathak CP, Hubbell JA. Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol Bioeng 1994; 44 (03) 383-386 doi:10.1002/bit.260440317
  • 13 Molano RD, Ricordi C, Stabler CL, Hubbell JA. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 2014; 111 (29) 10514-10519 doi:10.1073/pnas.1402216111
  • 14 Zhi ZL, Kerby A, King AJ, Jones PM, Pickup JC. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia 2012; 55 (04) 1081-1090 doi:10.1007/s00125-011-2431-y
  • 15 Ludwig B, Ludwig S. Transplantable bioartificial pancreas devices: current status and future prospects. Langenbeck's archives of surgery 2015; 400 (05) 531-540 doi:10.1007/s00423-015-1314-y
  • 16 Calafiore R, Basta G, Luca G. et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc 2006; 38 (04) 1156-1157 doi:10.1016/j.transproceed.2006.03.014
  • 17 O’Sullivan ES, Vegas A, Anderson DG, Weir GC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocrine reviews 2011; 32 (06) 827-844 doi:10.1210/er.2010-0026
  • 18 Pierson 3rd RN. Antibody-mediated xenograft injury: mechanisms and protective strategies. Transplant immunology 2009; 21 (02) 65-69 doi:10.1016/j.trim.2009.03.008
  • 19 Dufrane D, Gianello P. Macro- or microencapsulation of pig islets to cure type 1 diabetes. World journal of gastroenterology : WJG 2012; 18 (47) 6885-6893 doi:10.3748/wjg.v18.i47.688
  • 20 Klymiuk N, van Buerck L, Bahr A. et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61 (06) 1527-1532 doi:10.2337/db11-1325
  • 21 Buchwald P, Cechin SR, Weaver JD, Stabler CL. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets. Biomedical engineering online 2015; 14 (01) 28
  • 22 de Vos P, Marchetti P. Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 2002; 8 (08) 363-366
  • 23 De Vos P, Vegter D, De Haan BJ, Strubbe JH, Bruggink JE, Van Schilfgaarde R. Kinetics of intraperitoneally infused insulin in rats. Functional implications for the bioartificial pancreas. Diabetes 1996; 45 (08) 1102-1107 doi:doi.org/10.2337/diab.45.8.1102
  • 24 Juang JH, Bonner-Weir S, Ogawa Y, Vacanti JP, Weir GC. Outcome of subcutaneous islet transplantation improved by polymer device. Transplantation 1996; 61 (11) 1557-1561
  • 25 Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science (New York, NY) 2001; 294 (5542) 564-567 doi:10.1126/science.1064344
  • 26 Aigner B, Klymiuk N, Wolf E. Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant 2010; 15 (02) 201-206 doi:10.1097/MOT.0b013e328336ba4a