Handchir Mikrochir Plast Chir 2018; 50(05): 341-347
DOI: 10.1055/a-0746-3557
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

„Pathway protection“ – Verbesserte Motoneuron-Regeneration durch additive End-zu-Seit-Koaptation sensorischer Axone

„Pathway protection“ – enhanced motoneuron regeneration by end-to-side coaptation of sensory axons
Eva Györi
1   Medical University of Vienna, Division of Plastic and Reconstructive Surgery
,
Christine Radtke
1   Medical University of Vienna, Division of Plastic and Reconstructive Surgery
,
Tessa Gordon
2   University of Toronto, The Hospital for Sick Children, Division of Plastic Surgery
,
Gregory H. Borschel
2   University of Toronto, The Hospital for Sick Children, Division of Plastic Surgery
› Author Affiliations
Further Information

Publication History

07/24/2018

09/14/2018

Publication Date:
07 November 2018 (online)

Zusammenfassung

Die neuronale Regeneration nach proximaler Nervenverletzung und nach zeitlich verzögerter Nervenrekonstruktion ist eingeschränkt, was klinisch eine große Herausforderung darstellt. Experimentelle Studien haben gezeigt, dass die periphere Nervenregeneration einerseits durch die „chronische Axotomie“ der neuronalen Zellkörper und der proximalen Axone, welche von ihren Zielstrukturen getrennt sind und andererseits durch die „chronische Denervation“ des distalen Nervens beeinträchtigt wird. Der denervierte distale Nerv durchläuft Veränderungen, die mit der Waller´schen Degeneration assoziiert sind. Es kommt zu einer Aktivierung der Schwann-Zellen, die mit einwachsenden Axonen interagieren und deren Regeneration fördern, sowie zu einer Erhöhung der Konzentration von Wachstumsfaktoren. Diese Veränderungen führen zu der Entwicklung eines regenerationsfördernden Milieus im distalen Nerven, welches allerdings zeitlich begrenzt ist und bei lange andauernder Denervation abnimmt. Dies führt zu einer deutlichen Reduktion der neuronalen Regeneration. In der klinischen Situation führen proximale Nervenverletzungen, Rekonstruktionen mit langen Regenerationsdistanzen und verzögerte Nervenrekonstruktionen zu eingeschränkten funktionellen Ergebnissen. Um die neuronale Regeneration zu verbessern, wurden verschiedene Techniken der „pathway protection“ entwickelt, welche die chronische Denervation des distalen Nervens und der Zielorgane reduzieren sollen. Der Großteil dieser „Babysitter-Techniken“ verwendet motorische Spendernerven, die meist End-zu-Seit an den denervierten distalen Nerven koaptiert werden. In experimentellen Studien wurde gezeigt, dass es durch die einwachsenden Spenderaxone zu einer Erhöhung der Konzentration von Wachstumsfaktoren kommt und dass die distalen Zielorgane früher reinnerviert werden können. Durch motorische „Babysitter-Operationen“ wird allerdings ein motorisches Spendernervdefizit geschaffen. Um dieses zu umgehen wurde in den letzten Jahren die Möglichkeit der „pathway protection“ mit sensiblen Spendernerven untersucht. In experimentellen Studien konnte die motorische Regeneration durch End-zu-Seit-Koaptation sensibler Spendernerven an den distalen denervierten Nerven, beziehungsweise an lange Nerventransplantate, die Veränderungen der „chronischen Denervation“ durchlaufen, verbessert werden. Die sensible „pathway protection“ wurde bereits klinisch eingesetzt, es liegen allerdings noch keine funktionellen Langzeitergebnisse vor.

Abstract

Proximal nerve injuries and delayed nerve repair lead to reduced peripheral nerve regeneration. Poor functional results after nerve injury are clinically a very challenging problem. Experimental studies defined “chronic axotomy” of the neuron and the proximal part of a dissected nerve that are separated from their distal target, as well as “chronic denervation” of the distal nerve stump as an independent factors that reduce regenerative capacity of injured nerves. The denervated distal nerve undergoes changes associated with Wallerian degeneration. Denervated Schwann cells change their phenotype to interact with in-growing axons and increase the expression of growth factors. These changes lead to a pro-regenerative environment in the distal nerve stump. This growth-permissive environment deteriorates with time leading to significantly reduced nerve regeneration. Clinically, delayed nerve repair and long regeneration distances often result in inadequate functional outcomes. Different “pathway protection” techniques were developed to improve nerve regeneration and reduce the chronic denervation of the distal nerve. Most of these “babysitter” procedures used a motor donor nerve which was coapted usually end-to-side to the denervated distal nerve stump. Experimental studies showed that in-growing donor axons increase neurotrophic factor levels and improved reinnervation of distal targets. Motor “babysitter” procedures are, however, associated with a motor donor nerve deficit. In recent years, sensory “pathway protection” was investigated to avoid such motor deficit. Motoneuron regeneration of its axons can, in experimental animal models, be improved by end-to-side coaptation of sensory donor axons to either a denervated distal nerve stump or to a long autologous nerve graft, both of which undergo changes associated with chronic denervation. Sensory “pathway protection” has already been successfully clinically applied, however long-term functional analysis awaits.

 
  • Literatur

  • 1 Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011; 31: 5325-5334
  • 2 Gordon T, Hendry M, Lafontaine CA. et al. Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair. PloS one 2015; 10: e0127397
  • 3 Placheta E, Wood MD, Lafontaine C. et al. Enhancement of facial nerve motoneuron regeneration through cross-face nerve grafts by adding end-to-side sensory axons. Plast Reconstr Surg 2015; b 135: 460-471
  • 4 Huckhagel T, Nuchtern J, Regelsberger J. et al. Nerve trauma of the lower extremity: evaluation of 60,422 leg injured patients from the TraumaRegister DGU(R) between 2002 and 2015. Scand J Trauma Resusc Emerg Med 2018; 26: 40
  • 5 Noble J, Munro CA, Prasad VS. et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 1998; 45: 116-122
  • 6 Sunderland S. Rate of regeneration of sensory nerve fibers. Archives of neurology and psychiatry 1947; 58: 1-6
  • 7 Melvin TA, Limb CJ. Overview of facial paralysis: current concepts. Facial Plast Surg 2008; 24: 155-163
  • 8 Bosse F. Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349: 5-14
  • 9 Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Progress in neurobiology 2012; 98: 16-37
  • 10 Gordon T. Neurotrophic factor expression in denervated motor and sensory Schwann cells: Relevance to specificity of peripheral nerve regeneration. Exp Neurol 2014; 254C: 99-108
  • 11 Hoke A, Redett R, Hameed H. et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 2006; 26: 9646-9655
  • 12 Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways. Exp Neurol 2004; 190: 407-413
  • 13 Nichols CM, Brenner MJ, Fox IK. et al. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 2004; 190: 347-355
  • 14 Wood MD, Mackinnon SE. Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp Neurol 2015; 265: 171-175
  • 15 Kubiak CA, Kung TA, Brown DL. et al. State-of-the-Art Techniques in Treating Peripheral Nerve Injury. Plast Reconstr Surg 2018; 141: 702-710
  • 16 Riedl O, Frey M. Anatomy of the sural nerve: cadaver study and literature review. Plast Reconstr Surg 2013; 131: 802-810
  • 17 Poppler LH, Davidge K, Lu JC. et al. Alternatives to sural nerve grafts in the upper extremity. Hand 2015; 10: 68-75
  • 18 Sunderland IR, Brenner MJ, Singham J. et al. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg 2004; 53: 382-387
  • 19 Saheb-Al-Zamani M, Yan Y, Farber SJ. et al. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol 2013; 247: 165-177
  • 20 Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 1997; 14: 67-116
  • 21 Sulaiman OA, Gordon T. Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia 2000; 32: 234-246
  • 22 Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. The Journal of neuroscience : the official journal of the Society for Neuroscience 1995; a 15: 3876-3885
  • 23 Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. The Journal of neuroscience : the official journal of the Society for Neuroscience 1995; b 15: 3886-3895
  • 24 Gutmann E, Young JZ. The re-innervation of muscle after various periods of atrophy. J Anat 1944; 78: 15-43
  • 25 Gutmann E. Effect of delay of innervation on recovery of muscle after nerve lesions. J Neurophysiol 1948; 11: 279-294
  • 26 Irintchev A, Draguhn A, Wernig A. Reinnervation and recovery of mouse soleus muscle after long-term denervation. Neuroscience 1990; 39: 231-243
  • 27 Bain JR, Veltri KL, Chamberlain D. et al. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience 2001; 103: 503-510
  • 28 Gordon T, Yang JF, Ayer K. et al. Recovery potential of muscle after partial denervation: a comparison between rats and humans. Brain Res Bull 1993; 30: 477-482
  • 29 Furey MJ, Midha R, Xu QG. et al. Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate. Neurosurgery 2007; 60: 723-732 discussion 732–723
  • 30 Gordon T, Placheta E, Borschel GH. Delayed peripheral nerve repair: methods, including surgical ‘cross-bridging’ to promote nerve regeneration. Neural regeneration research 2015; 10: 1540-1544
  • 31 Midha R, Munro CA, Chan S. et al. Regeneration into protected and chronically denervated peripheral nerve stumps. Neurosurgery 2005; 57: 1289-1299 discussion 1289–1299
  • 32 Sulaiman OA, Gordon T. Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it. Neurosurgery 2009; 65: A105-114
  • 33 Zhao C, Veltri K, Li S. et al. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma 2004; 21: 1468-1478
  • 34 Zuijdendorp HM, Tra WM, van Neck JW. et al. Delay of denervation atrophy by sensory protection in an end-to-side neurorrhaphy model: a pilot study. J Plast Reconstr Aesthet Surg 2010; 63: 1949-1952
  • 35 Li Q, Zhang P, Yin X. et al. Early sensory protection in reverse end-to-side neurorrhaphy to improve the functional recovery of chronically denervated muscle in rat: a pilot study. J Neurosurg 2014; 121: 415-422
  • 36 Yoshimura K, Asato H, Jejurikar SS. et al. The effect of two episodes of denervation and reinnervation on skeletal muscle contractile function. Plast Reconstr Surg 2002; 109: 212-219
  • 37 Veltri K, Kwiecien JM, Minet W. et al. Contribution of the distal nerve sheath to nerve and muscle preservation following denervation and sensory protection. J Reconstr Microsurg 2005; 21: 57-70 discussion 71–54
  • 38 Sulaiman OA, Gordon T. Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia 2002; 37: 206-218
  • 39 Brushart TM. Preferential reinnervation of motor nerves by regenerating motor axons. The Journal of neuroscience : the official journal of the Society for Neuroscience 1988; 8: 1026-1031
  • 40 Brushart TM, Aspalter M, Griffin JW. et al. Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro. Exp Neurol 2013; 247: 272-281
  • 41 Hendry JM, Alvarez-Veronesi MC, Snyder-Warwick A. et al. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype. Neurosurgery 2015; 77: 803-813
  • 42 Hendry JM, Alvarez-Veronesi MC, Placheta E. et al. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury. Ann Neurol 2016; 80: 112-126
  • 43 Mackinnon SE, Novak CB, Myckatyn TM. et al. Results of reinnervation of the biceps and brachialis muscles with a double fascicular transfer for elbow flexion. The Journal of hand surgery 2005; 30: 978-985
  • 44 Ray WZ, Pet MA, Yee A. et al. Double fascicular nerve transfer to the biceps and brachialis muscles after brachial plexus injury: clinical outcomes in a series of 29 cases. J Neurosurg 2011; 114: 1520-1528
  • 45 Ladak A, Spinner RJ. Double fascicular nerve transfer for elbow flexion: is 2 better than 1?. Neurosurgery 2013; 72: 1055-1056
  • 46 Bain JR, Hason Y, Veltri K. et al. Clinical application of sensory protection of denervated muscle. J Neurosurg 2008; 109: 955-961
  • 47 Kalantarian B, Rice DC, Tiangco DA. et al. Gains and losses of the XII-VII component of the “baby-sitter” procedure: a morphometric analysis. J Reconstr Microsurg 1998; 14: 459-471
  • 48 Terzis JK, Tzafetta K. The “babysitter” procedure: minihypoglossal to facial nerve transfer and cross-facial nerve grafting. Plast Reconstr Surg 2009; 123: 865-876
  • 49 Endo T, Hata J, Nakayama Y. Variations on the “baby-sitter” procedure for reconstruction of facial paralysis. J Reconstr Microsurg 2000; 16: 37-43
  • 50 Sharma PR, Zuker RM, Borschel GH. Gracilis Free Muscle Transfer in the Treatment of Pediatric Facial Paralysis. Facial Plast Surg 2016; 32: 199-208