Klin Monbl Augenheilkd 2018; 235(11): 1229-1234
DOI: 10.1055/a-0715-8072
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Mit klinischer Elektrophysiologie hinter die Netzhaut

Reaching Beyond the Retina with Clinical Electrophysiology
Michael B. Hoffmann
1   Klinik für Augenheilkunde, Universität Magdeburg, Magdeburg
2   Center for Behavioral Brain Sciences, Magdeburg
,
Sven P. Heinrich
3   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
,
Hagen Thieme
1   Klinik für Augenheilkunde, Universität Magdeburg, Magdeburg
,
Khaldoon O. Al-Nosairy
1   Klinik für Augenheilkunde, Universität Magdeburg, Magdeburg
› Author Affiliations
Further Information

Publication History

eingereicht 02 July 2018

akzeptiert 20 August 2018

Publication Date:
20 November 2018 (online)

Zusammenfassung

Elektrophysiologische Ableitungen von Netzhaut und Kortex sind zielführend, um auch postretinale Schädigungen im Rahmen ophthalmologischer und neuroophthalmologischer Diagnostik aufzudecken. Dabei dienen Musterelektroretinogramme (PERG) der Überprüfung der retinalen Ganglienzellen und visuell evozierte Potenziale (VEP) der Überprüfung der Sehbahn in ihrer Gesamtheit. Sie unterstützen damit die objektive Funktionsüberprüfung der Sehbahn sowie die Differenzialdiagnostik. Während konventionelle elektrophysiologische Verfahren nur bedingt geeignet sind, lokale gesichtsfeldspezifische Defekte aufzudecken, ist dies die Domäne der multifokalen Elektrophysiologie. Diese ermöglicht eine ortsaufgelöste Beurteilung mit dem multifokalen PERG (mfPERG) und dem multifokalen VEP (mfVEP) bis hin zur objektiven Gesichtsfeldtestung mit dem mfVEP. Entscheidend für den erfolgreichen Einsatz dieses Methodenspektrums ist allerdings die Berücksichtigung möglicher Störfaktoren bei der Durchführung der Messungen und bei der Interpretation der Ergebnisse. Dies wird im vorliegenden Artikel anhand einer Reihe typischer Anwendungsbeispiele verdeutlicht.

Abstract

Electrophysiological recordings from the retina and cortex are pivotal to reach beyond the retina for ophthalmological and neuro-ophthalmological diagnostic testing. Pattern electroretinograms (PERG) can be used to examine retinal ganglia cells and visual evoked potentials (VEP) help to investigate overall visual pathways. Thus, they support objective functional tests of visual pathways, as well as differential diagnosis. Conventional electrophysiology is of limited value in detecting local defects in the visual field. This gap is filled by applications of multifocal electrophysiology. This permits spatially resolved testing with multifocal PERG (mfPERG) and multifocal VEP (mfVEP), and eventually objective visual field testing with mfVEP. It is important for this spectrum of methods to consider possible confounds when performing the measurements and when interpreting the results. This is explained in the present article on the basis of a series of typical examples.

 
  • Literatur

  • 1 Heinrich SP, Hoffmann MB. Sehschärfe, Kontrastempfindlichkeit, Farbensehen: Gedanken zu psychophysischen Untersuchungen in der Neuroophthalmologie. Klin Monatsbl Augenheilkd 2018; 235: 1212-1217
  • 2 Bach M, Kellner U. [Electrophysiological diagnosis in ophthalmology]. Ophthalmologe 2000; 97: 898-920
  • 3 Meigen T. [Electrophysiology in ophthalmology]. Ophthalmologe 2015; 112: 533-544
  • 4 Robson AG, Nilsson J, Li S. et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 2018; 136: 1-26
  • 5 Sutter EE, Tran D. The field topography of ERG components in man – I. The photopic luminance response. Vision Res 1992; 32: 433-446
  • 6 Bach M, Brigell MG, Hawlina M. et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 2013; 126: 1-7
  • 7 Odom JV, Bach M, Brigell M. et al. International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 2016; 133: 1-9
  • 8 Bach M, Hoffmann MB. The Origin of the Pattern Electroretinogram (PERG). In: Heckenlively J, Arden G. Principles and Practice of Clinical Electrophysiology of Vision. Cambridge, London: MIT Press; 2006: 185-196
  • 9 Bach M, Cuno AK, Hoffmann MB. Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram. Exp Eye Res 2018; 169: 48-53
  • 10 Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 2001; 20: 531-561
  • 11 Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 2008; 85: 386-395
  • 12 Bode SFN, Jehle T, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci 2011; 52: 4300-4306
  • 13 Preiser D, Lagrèze WA, Bach M. et al. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 2013; 54: 1182-1191
  • 14 Bach M, Sulimma F, Gerling J. Little correlation of the pattern electroretinogram (PERG) and visual field measures in early glaucoma. Doc Ophthalmol 1997; 94: 253-263
  • 15 Harrison WW, Viswanathan S, Malinovsky VE. Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom Vis Sci 2006; 83: 473-485
  • 16 Hoffmann MB, Flechner JJ. Slow pattern-reversal stimulation facilitates the assessment of retinal function with multifocal recordings. Clin Neurophysiol 2008; 119: 409-417
  • 17 Klistorner AI, Graham SL, Martins A. Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 2000; 100: 155-165
  • 18 Stiefelmeyer S, Neubauer AS, Berninger T. et al. The multifocal pattern electroretinogram in glaucoma. Vision Res 2004; 44: 103-112
  • 19 Monteiro MLR, Cunha LP, Costa-Cunha LVF. et al. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci 2009; 50: 3535-3541
  • 20 Monteiro MLR, Hokazono K, Cunha LP. et al. Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression. Graefes Arch Clin Exp Ophthalmol 2013; 251: 903-915
  • 21 Monteiro MLR, Hokazono K, Cunha LP. et al. Multifocal pattern electroretinography for the detection of neural loss in eyes with permanent temporal hemianopia or quadrantanopia from chiasmal compression. Br J Ophthalmol 2012; 96: 104-109
  • 22 Bach M, Mathieu M. Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 2004; 108: 99-106
  • 23 Herbik A, Reupsch J, Thieme H. et al. Differential effects of optic media opacities on simultaneous multifocal pattern electroretinograms and visual evoked potentials. Clin Neurophysiol 2014; 125: 2418-2426
  • 24 Armington JC, Brigell M. Effects of stimulus location and pattern upon the visually evoked cortical potential and the electroretinogram. Int J Neurosci 1981; 14: 169-178
  • 25 Sakaue H, Katsumi O, Mehta M. et al. Simultaneous pattern reversal ERG and VER recordings. Effect of stimulus field and central scotoma. Invest Ophthalmol Vis Sci 1990; 31: 506-511
  • 26 Hood DC, Odel JG, Zhang X. Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 2000; 41: 4032-4038
  • 27 Khedr EM, El Toony LF, Tarkhan MN. et al. Peripheral and central nervous system alterations in hypothyroidism: electrophysiological findings. Neuropsychobiology 2000; 41: 88-94
  • 28 Tamburini G, Tacconi P, Ferrigno P. et al. Visual evoked potentials in hypothyroidism: a long-term evaluation. Electromyogr Clin Neurophysiol 1998; 38: 201-205
  • 29 Groswasser Z, Kriss A, Halliday AM. et al. Pattern- and flash-evoked potentials in the assessment and management of optic nerve gliomas. J Neurol Neurosurg Psychiatry 1985; 48: 1125-1134
  • 30 Acharya JN, Hani A, Cheek J. et al. American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. J Clin Neurophysiol 2016; 33: 308-311
  • 31 Bach M, Maurer JP, Wolf ME. Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 2008; 92: 396-403
  • 32 Hoffmann MB, Brands J, Behrens-Baumann W. et al. VEP-based acuity assessment in low vision. Doc Ophthalmol 2017; 135: 209-218
  • 33 Mackay AM, Bradnam MS, Hamilton R. Rapid detection of threshold VEPs. Clin Neurophysiol 2003; 114: 1009-1020
  • 34 Apkarian P, Reits D, Spekreijse H. et al. A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 1983; 55: 513-531
  • 35 von dem Hagen EAH, Hoffmann MB, Morland AB. Identifying human albinism: a comparison of VEP and fMRI. Invest Ophthalmol Vis Sci 2008; 49: 238-249
  • 36 Hoffmann MB, Dumoulin SO. Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. Trends Neurosci 2015; 38: 55-65
  • 37 Hoffmann MB, Lorenz B, Morland AB. et al. Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials. Invest Ophthalmol Vis Sci 2005; 46: 3892-3898
  • 38 Hoffmann MB, Schmidtborn LC, Morland AB. Abnormale Repräsentationen im visuellen Kortex von Albinismus-Patienten. Ophthalmologe 2007; 104: 666-673
  • 39 Hoffmann MB, Thieme H, Ahmadi K. [Potential of fMRI for the Functional Assessment of the Pathological Visual System]. Klin Monatsbl Augenheilkd 2017; 234: 303-310
  • 40 Barett G, Blumhardt L, Halliday AM. et al. A paradox in the lateralisation of the visual evoked response. Nature 1976; 261: 253-255
  • 41 Hoffmann MB, Seufert PS. Simulated nystagmus reduces pattern-reversal more strongly than pattern-onset multifocal visual evoked potentials. Clin Neurophysiol 2005; 116: 1723-1732
  • 42 Hoffmann MB, Seufert PS, Bach M. Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 2004; 115: 2659-2665
  • 43 Saunders KJ, Brown G, McCulloch DL. Pattern-onset visual evoked potentials: more useful than reversal for patients with nystagmus. Doc Ophthalmol 1997; 94: 265-274
  • 44 Hoffmann MB. Investigating visual Function with multifocal visual evoked Potentials. In: Lorenz B, Borruat F-X. eds. Essentials in Ophthalmology: pediatric Ophthalmology, Neuro-Ophthalmology, Genetics. Berlin, Heidelberg, New York: Springer; 2008: 139-157
  • 45 Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 2003; 22: 201-251
  • 46 Chen JY, Hood DC, Odel JG. et al. The effects of retinal abnormalities on the multifocal visual evoked potential. Invest Ophthalmol Vis Sci 2006; 47: 4378-4385
  • 47 Herbik A, Hölzl GC, Reupsch J. et al. Differential effects of optic media opacities on mfERGs and mfVEPs. Clin Neurophysiol 2013; 124: 1225-1231