Informationen aus Orthodontie & Kieferorthopädie 2018; 50(04): 293-303
DOI: 10.1055/a-0677-7554
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Das Grazer Implantat Stabilisierte Pendulum (GISP) zur Distalisierung im Oberkiefer

Maxillary Molar Distalization with the Graz Implant Supported Pendulum (GISP)
Friedrich K. Byloff
1   Kieferorthopäde in eigener Praxis, Graz, Österreich
,
Hans Kärcher
2   Em. Vorstand der Abt. Mund-Kiefer und Gesichtschirurgie, Universitätszahnklinik Graz, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2018 (online)

Zusammenfassung

Das GISP (Graz Implantat Stabilisierte Pendulum) wurde zur ein- oder beidseitigen Molarendistalisation im Oberkiefer entwickelt und besteht aus 2 Teilen. In der derzeitigen Form besteht der fixierte Teil aus einer Titanplatte mit 2 Zapfen. Die Platte wird direkt auf die Gaumenmukosa mit 3 Miniimplantatschrauben fixiert. Die Schraubenköpfe werden so mit dem TriLockR System (Medartis, Basel, Schweiz) in der Platte verblockt, dass der durch die Distalisation entstehende Gegendruck direkt auf den Knochen gelenkt wird und die Mukosa nicht komprimieren kann. Der abnehmbare Teil mit den Pendulumfedern kann problemlos auf- und abgesteckt werden. Aktivierungen werden extraoral durchgeführt. Das charakteristische am GISP ist das einfache Auf- und Abstecken des Federteiles und die dadurch einfache extraorale Kontrolle über die Bewegung in allen 3 Raumachsen, wie beispielsweise Distalisation, Aufrichtung und Expansion von Molaren.

Herstellung und Anwendung der Apparatur wird mit klinischen Beispielen erklärt und illustriert. Unterschiede zu anderen Gaumenverankerungen mit Miniimplantaten werden aufgezeigt.

Abstract

The GISP (Graz Implant Supported Pendulum) is an appliance consisting of 2 parts (one fixed and one removable) which was developed to distalize maxillary molars uni- or bilaterally. In the current design the fixed part consists of a titanium plate with 2 pins which is placed directly to the palatal mucosa with 3 locking miniimplants (TriLockR System; Medartis, Basel, Switzerland).

The heads of the miniimplants are sunk into special cavities of the plate and locked to ensure the mucosa is not compressed, as the pressure generated during distalization is thereby transferred to the bone instead. The part containing the pendulum springs is removable and can easily be plugged in and out. Reactivations are made extraorally. The significant characteristic of this device is that it can be easily removed and permits control of movement in all planes of space such as distalization, uprighting and expansion of molars.

The fabrication and use of the appliance is illustrated by clinical examples, emphasizing the difference to other distalizing appliances anchored in the palate.

 
  • Literatur

  • 1 Hilgers J. The Pendulum appliance for Class II non-compliance therapy. J Clin Orthod 1992; 16: 706-714
  • 2 Ghosh J, Nanda R. Evaluation of an intraoral maxillary molar distalization technique. Am J Orthod Dentofacial Orthop 1996; 110: 639-646
  • 3 Byloff FK, Darendeliler MA. Distal molar movement using the Pendulum Appliance. Clinical and radiological evaluation: Part 1. Angle Orthod 1997; 67: 249-260
  • 4 Byloff FK, Darendeliler MA, Clar E. et al. Distal molar movement using the Pendulum Appliance. Part 2: The effects of maxillary molar root uprighting bends. Angle Orthod 1997; 67: 261-270
  • 5 Bussick TJ, Mc Namara Jr J. Dentoalveolar and skeletal changes associated with the pendulum appliance. Am J Orthod Dentofacial Orthop 2000; 117: 333-343
  • 6 Carano A, Testa M. The distal jet for upper molar distalization. J Clin Orthod 1996; 30: 374-380
  • 7 Carano A, Testa M, Bowman SJ. The distal jet simplified and updated. J Clin Orthod 2002; 36: 586-590
  • 8 Bowman J. Upper-Molar Distalization and the Distal Jet. JCO/MARCH 2016; 159-169
  • 9 Keles A, Erverdi N, Sezen S. Bodily distalization of molars with absolute anchorage. Angle Orthod 2003; 73: 471-482
  • 10 Keles A, Sayinsu K. A new approach in maxillary molar distalization: intraoral bodily molar distalizer. Am J Orthod Dentofacial Orthop 2000; 117: 39-48
  • 11 Fortini A, Lupoli M, Giuntoli F. et al. Dentoskeletal effects induced by rapid molar distalization with the first class appliance. Am J Orthod Dentofacial Orthop 2004; 125: 697-705
  • 12 Wilmes B. Fields of application of mini-implants, in Mini-Implants in Orthodontics: Innovative Anchorage Concepts. ed Ludwig B, Baumgaertel S. et al. Quintessence. Publishing; London: 2008. p 91
  • 13 Wilmes B, Drescher D. A miniscrew system with interchangeable abutments. J Clin Orthod 2008; 42: 574-580
  • 14 Wilmes B, Drescher D, Nienkemper M. A miniplate system for improved stability of skeletal anchorage. J Clin Orthod 2009; 43: 494-501
  • 15 Wilmes B, Drescher D. Application and effectiveness of the Beneslider: A device to move molars distally. World J Orthod 2010; 11: 331-340
  • 16 Wilmes B, Nienkemper M, Drescher D. Application and effectiveness of a mini-implant and tooth-borne rapid palatal expansion device: The Hybrid Hyrax. World J Orthod 2010; 11: 323-330
  • 17 Wilmes B, Nienkemper M, Drescher D. Der Beneslider zur Distalisierung im Oberkiefer. Inf Orthod Kieferorthop 2013; 45: 42-50
  • 18 Winsauer H, Muchitsch AP, Winsauer C. et al. The TopJet for Routine Bodily Molar Distalization. JCO/FEBRUARY 2013; 96-107
  • 19 Hourfar J, Ludwig B, Wilhelmy B. et al. Molarendistalisation mit dem skelettal verankerten Pendulum K. Inf Orthod Kieferorthop 2013; 45: 33-41
  • 20 Kinzinger G, Wehrbein H, Byloff FK. et al. Innovative anchorage alternatives for molar distalization. An overview. J Orofac Orthop 2005; 66: 397-413
  • 21 Kinzinger G, Gülden N, Yildizhan F. et al. Efficiency of a skeletonized distal jet appliance supported by mini-screw anchorage for noncompliance maxillary molar distalization. Am J Orthod Dentofacial Orthop 2009; 136: 578-586
  • 22 Cozzani M, Zallio F, Lombardo L. et al. Efficiency of the distal mini-screw in the distal movement of maxillary molars. World J Orthod 2010; 11: 341-345
  • 23 Kook Y, Lee D, Kim S. et al. Design Improvements in the Modified C-Palatal Plate for Molar Distalization. JCO/APRIL 2013; 241-248
  • 24 Ludwig B, Glasl B, Kinzinger G. et al. The skeletal frog appliance for maxillary molar distalization. J Clin Orthod 2011; 45: 77-84 quiz 91
  • 25 Glasl B, Ludwig B, Kinzinger G. et al. Molarendistalisation mit skelettal getragenen Non-Compliance-Geräten unter Einsatz von Miniimplantaten. Eine aktuelle Literaturübersicht. Kieferorthop 2009; 23: 7-17
  • 26 Fudalej P, Antoszewska J. Are orthodontic distalizers reinforced with the temporary skeletal anchorage devices effective?. Am J Orthod Dentofacial Orthop 2011; 139: 722-729
  • 27 Kloukos D, Züger J, Grossen J. Anwendungsmöglichkeiten von paramedian gesetzten Gaumenimplantaten in der kieferorthopädischen Behandlung. Inf Orthod Kieferorthop 2013; 45: 26-32
  • 28 Wehrbein H, Merz BR, Diedrich P. et al. The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res 1996; 7: 410-416
  • 29 Wehrbein H, Feifel H, Diedrich P. Palatal implant anchorage reinforcement of posterior teeth: A prospective study. Am J Orthod Dentofacial Orthop 1999; 116: 678-686
  • 30 Wilmes B, Drescher D. Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Surg 2011; 40: 697-703
  • 31 Byloff FK, Kärcher H, Clar E. et al. An implant to eliminate anchorage loss during molar distalization: A case report involving the Graz implant-supported pendulum. Int J Adult Orthod Orthognath Surg 2000; 15: 129-137
  • 32 Kärcher H, Byloff FK, Clar E. The Graz implant supported pendulum: A technical note. J Craniomaxillofac Surg 2002; 30: 87-90
  • 33 Byloff FK, Kärcher H. Maxillary molar distalization with the Graz Implant-Supported Pendulum appliance. Section VI, Chapter 23 in “Skeletal Anchorage in Orthodontic Treatment of Class II Malocclusion” , Moschos A. Papadopoulos, Mosby Elsevier 2015
  • 34 Dudic A, Giannopoulou C, Kiliaridis St. Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofacial Orthop 2013; 143: 616-621
  • 35 Nienkemper M, Wilmes B, Pauls A. et al. Treatment efficiency of mini-implant-borne distalization depending on age and second-molar eruption. J Orofac Orthop 2014; 75: 118-132
  • 36 Alikhani M, Chou MY, Khoo E. et al. Age-dependent biologic response to orthodontic forces. Am J Orthod Dentofacial Orthop 2018; 153: 632-644
  • 37 Iwasaki LR, Haack JE, Nickel JC. et al. Human tooth movement in response to continuous stress of lowmagnitude. Am J Orthod Dentofacial Orthop 2000; 117: 175-183
  • 38 Schlegel K, Kinner F, Schlegel K. The anatomic basis for palatal implants in orthodontics. Int J Adult Orthod Orthognath Surg 2002; 17: 133-139
  • 39 Gracco A, Luca L, Siciliani G. Molar distalisation with skeletal anchorage. Aust Orthod J 2007; 23: 147-152
  • 40 Kang S, Lee S, Ahn S. et al. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofacial Orthop 2007; 131 (4): S74–S81
  • 41 Costa A, Melsen B, Kolsen Petersen J. Zygoma ligature-an alternative anchorage in the upper jaw. J Clin Orthod 1998; 32: 154-158
  • 42 Ardekian L, Oved-Peleg E, Mactei E. et al. The clinical significance of sinus membrane perforation during augmentation of the maxillary sinus. J Oral Maxillofac Surg 2006; 64: 77-282
  • 43 Jia X, Chen X, Huang X. Influence of orthodontic mini-implant penetration of the maxillary sinus in the infrazygomatic crest region. Am J Orthod Dentofacial Orthop 2018; 153: 656-661
  • 44 Itsuki Y, Imamura E. A new palatal implant with inter-changeable upper units. J Clin Orthod 2009; 43: 318-323
  • 45 Wilmes B, Drescher D, Nienkemper M. A miniplate system for improved stability of skeletal anchorage. J Clin Orthod 2009; 43: 494-501
  • 46 Pseiner BC, Wunderlich A, Freudenthaler JW. Upper molar distalization with skeletally anchored TopJet appliance. J Orofac Orthop 2014; 74: 42-50
  • 47 Suzuki EY, Suzuki B. The Indirect Palatal Miniscrew Anchorage and Distalization Appliance JCO/February 2016; 80–96
  • 48 Giancotti A, Muzzi F, Greco M. et al. Palatal implant-supported distalizing devices: Clinical application of the Straumann Orthosystem. World J Orthod 2002; 3: 135-139
  • 49 Wilmes B, Drescher D. Application and effectiveness of the Beneslider: A device to move molars distally. World J Orthod 2010; 11: 331-340
  • 50 Keles A, Erverdi N, Sezen S. Bodily distalization of molars with absolute anchorage. Angle Orthod 2003; 73: 471-482
  • 51 Kinzinger G, Gülden N, Yildizhan F. et al. Anchorage efficacy of palatally-inserted mini-screws in molar distalization with a periodontally/mini-screw-anchored Distal Jet. J Orofac Orthop 2008; 69: 110-120
  • 52 Kook Y, Park JH, Kim YJ. et al. Sagittal correction of adolescent patients with modified palatal anchorage plate appliances. Am J Orthod Dentofacial Orthop 2015; 148: 674-684
  • 53 Wehrbein H, Glatzmaier J, Mundwiler U. et al. The Orthosystem: A new implant system for orthodontic anchorage in the palate. J Orofac Orthop 1996; 57: 142-153
  • 54 Wehrbein H, Merz B, Diedrich P. et al. The use of palatal implants for orthodontic anchorage. Design and clinical application of the Orthosystem. Clin Oral Impl Res 1996; 7: 410-416
  • 55 Önçag G, Seçkin Ö, Dinçer B. et al. Osseointegrated implants with pendulum springs for maxillary molar distalization: A cephalometric study. Am J Orthod Dentofacial Orthop 2007; 131: 16-26
  • 56 Öncag G, Akyalçın S, Arıkanc F. The effectiveness of a single osseointegrated implant combined with pendulum springs for molar distalization. Am J Orthod Dentofacial Orthop 2007; 131: 277-284