Sportphysio 2018; 06(04): 153-159
DOI: 10.1055/a-0642-8160
Focus
Einführung
© Georg Thieme Verlag KG Stuttgart · New York

Exercise is medicine: Die Rolle von Zytokinen und Myokinen für Gesundheit und Krankheit

Patrick Wahl
Further Information

Publication History

Publication Date:
07 September 2018 (online)

Zusammenfassung

Die Skelettmuskulatur ist das größte Organ normalgewichtiger Personen. Mittlerweile wird sie als aktives sekretorisches Organ betrachtet. Ausgelöst durch Kontraktion sezerniert die Muskulatur regulatorische Myokine, die u. a. den sogenannten „Organ Cross-Talk“ vermitteln, die Kommunikation zwischen der Skelettmuskulatur und anderen Teilen des Organismus. Den Myokinen werden viele gesundheitsfördernde Effekte zugeschrieben. Sie wirken positiv auf den Metabolismus und unterdrücken Entzündungen.

 
  • Literatur

  • 1 Nocon M, Hiemann T, Muller-Riemenschneider F. et al. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 2008; 15 (03) 239-246 doi:10.1097/HJR.0b013e3282f55e09
  • 2 Bronnum-Hansen H, Juel K, Davidsen M. et al. Impact of selected risk factors on expected lifetime without long-standing, limiting illness in Denmark. Prev Med 2007; 45 (01) 49-53 doi:10.1016/j.ypmed.2007.03.010
  • 3 Monninkhof EM, Elias SG, Vlems FA. et al. Physical activity and breast cancer: A systematic review. Epidemiology 2007; 18: 137-57 doi:10.1097/01.ede.0000251167.75581.98
  • 4 Paffenbarger Jr RS, Lee IM, Leung R. Physical activity and personal characteristics associated with depression and suicide in American college men. Acta Psychiatr Scand Suppl 1994; 377: 16-22 doi:10.1111/j.1600–0447.1994.tb05796.x
  • 5 Rovio S, Kareholt I, Helkala EL. et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 2005; 4: 705-711 doi:10.1016/S1474–4422(05)70198–8
  • 6 Tuomilehto J, Lindstrom J, Eriksson JG. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance”. N Engl J Med 2001; 344 (18) 1343-50 doi:10.1056/NEJM200105033441801
  • 7 Wolin KY, Yan Y, Colditz GA. et al. Physical activity and colon cancer prevention: A meta-analysis. Br. J. Cancer 2009; 100: 611-6 doi:10.1038/sj.bjc.6604917
  • 8 Knowler WC, Barrett-Connor E, Fowler SE. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346 (06) 393-403 doi: 10.1056/NEJMoa012512
  • 9 Eckardt K, Görgens SW, Raschke S. et al. Myokines in insulin resistance and type 2 diabetes. Diabetologia 2014; 57 (06) 1087-99 doi:10.1007/s00125–014–3224-x
  • 10 Pedersen BK. Muscles and their myokines. J Exp Biol 2011; 214 (Pt 2) 337-46 doi:10.1242/jeb.048074
  • 11 Fischer CP, Berntsen A, Perstrup LB. et al. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 2007; 17: 580-587 doi:10.1111/j.1600–0838.2006.00602.x
  • 12 Bruunsgaard H, Pedersen AN, Schroll M. et al. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans. Clin Exp Immunol 1999; 118 (02) 235-241 doi:10.1046/j.1365–2249.1999.01045.x
  • 13 Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunology and Allergy Clinics of North America 2003; 23 (01) 15-39 doi:10.1016/S0889–8561(02)00056–5
  • 14 Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation. Vol. 2008, Article ID 109502, 6 pages. DOI: doi:10.1155/2008/109502
  • 15 Wahl P, Mathes S, Köhler K. et al. Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res 2013; 45 (11) 827-33 doi:10.1055/s-0033–1347242
  • 16 Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008; 454 (7203) 463-469 doi:10.1038/nature07206
  • 17 Nieman DC. Current perspective on exercise immunology. Curr Sports Med Rep 2003; 2 (05) 239-42
  • 18 Ostrowski K, Rohde T, Asp S. et al. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515 part 1 287-291 doi:10.1111/j.1469–7793.1999.287ad.x
  • 19 Brandt C, Pedersen BK. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010; 2010: 520258 doi:10.1155/2010/520258
  • 20 Hawley JA, Hargreaves M, Joyner MJ. et al. Integrative biology of exercise. Cell 2014; 159 (04) 738-49 doi:10.1016/j.cell.2014.10.029
  • 21 Catoire M, Kersten S. The search for exercise factors in humans. FASEB J 2015; 29 (05) 1615-28 doi:10.1096/fj.14–263699
  • 22 Pedersen BK, Edward F. Adolph distinguished lecture: Muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol 2009; 107 (04) 1006-14 doi:10.1152/japplphysiol.00734.2009
  • 23 Pedersen BK, Pedersen M, Krabbe KS. et al. Role of exercise induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol 2009; 94 (12) 1153-60 doi:10.1113/expphysiol.2009.048561
  • 24 Broholm C, Mortensen OH, Nielsen S. et al. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. Journal of Physiology 2008; 586 (08) 2195-2201 doi:10.1113/jphysiol.2007.149781
  • 25 Izumiya Y, Bina HA, Ouchi N. et al. FGF21 is an Akt-regulated myokine. FEBS Letters 2008; 582 (27) 3805-10 doi:10.1016/j.febslet.2008.10.021
  • 26 Ouchi N, Oshima Y, Ohashi K. et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric oxide synthase-dependent mechanism. J Biol Chem 2008; 283 (47) 32802-11 doi:10.1074/jbc.M803440200
  • 27 Yoon JH, Kim J, Song P. Secretomics for skeletal muscle cells: A discovery of novel regulators?. Adv Biol Regul 2012; 52 (02) 340-350 doi:10.1016/j.jbior.2012.03.001
  • 28 Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C. et al. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 2008; 57: 3211-21 doi:10.2337/db07–1062
  • 29 Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol Rev 2008; 88 (04) 1379-1406 doi:10.1152/physrev.90100.2007
  • 30 Steensberg A, van Hall G, Osada T. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 2000; 529: 237-242 doi:10.1111/j.1469–7793.2000.00237.x
  • 31 Steensberg A, Febbraio MA, Osada T. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 2001; 537: 633-39 doi:10.1111/j.1469–7793.2001.00633.x
  • 32 Keller C, Steensberg A, Pilegaard H. et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content. FASEB J 2001; 15: 2748-2750 doi:10.1096/fj.01–0507fje
  • 33 Starkie R, Ostrowski SR, Jauffred S. et al. Exercise and IL-6 infusion inhibit endotoxininduced TNF-alpha production in humans. FASEB J 2003; 17 (08) 884-6 doi:10.1096/fj.02–0670fje
  • 34 Steensberg A, Fischer CP, Keller C. et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 2003; 285 (02) E433-7 doi:10.1152/ajpendo.00074.2003
  • 35 Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Applied Physiology, Nutrition and Metabolism 2007; 32 (05) 833-39 doi:10.1139/H07–054
  • 36 Thornton SM, Krolopp JE, Abbott MJ. IL-15 Mediates mitochondrial activity through a PPARδ-dependent-PPARα-independent mechanism in skeletal muscle cells. PPAR Res. 2016; 2016: 5465804 doi:10.1155/2016/5465804
  • 37 Busquets S, Figueras MT, Meijsing S. et al. Interleukin-15 decreases proteolysis in skeletal muscle: A direct effect. Int J Mol Med 2005; 16: 471-476 doi:10.3892/ijmm.16.3.471
  • 38 Krolopp JE, Thornton SM, Abbott MJ. IL-15 activates the Jak3/STAT3 signaling pathway to mediate glucose uptake in skeletal muscle cells. Front Physiol 2016; 7: 626 doi:10.3389/fphys.2016.00626
  • 39 Nieman DC, Davis JM, Brown VA. et al. Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 2004; 96: 1292-8 doi:10.1152/japplphysiol.01064.2003
  • 40 Nielsen AR, Mounier R, Plomgaard P. et al. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 2007; 584: 305-12 doi:10.1113/jphysiol.2007.139618
  • 41 Tamura Y, Watanabe K, Kantani T. et al. Upregulation of circulating IL-15 by treadmill running in healthy individuals: Is IL-15 an endocrine mediator of the beneficial effects of endurance exercise?. Endocr J 2011; 58: 211-15 doi:10.1507/endocrj.K10E-400
  • 42 Yeo NH, Woo J, Shin KO. et al. The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness 2012; 52 (04) 448-54
  • 43 Riechman SE, Balasekaran G, Roth SM. et al. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 2004; 97: 2214-19 doi:10.1152/japplphysiol.00491.2004
  • 44 Matthews VB, Astrom MB, Chan MH. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 2009; 52 (07) 1409-18 doi:10.1007/s00125–009–1364–1
  • 45 Krabbe KS, Nielsen AR, Krogh-Madsen R. et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 2007; 50 (02) 431-8 doi:10.1007/s00125–006–0537–4
  • 46 Wahl P, Hein M, Achtzehn S. et al. Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. J Musculoskelet Neuronal Interact 2015; 15 (01) 53-9
  • 47 Rasmussen P, Brassard P, Adser H. et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009; 94: 1062-69 doi:10.1113/expphysiol.2009.048512
  • 48 Huh JY. The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2018; 41 (01) 14-29 doi:10.1007/s12272–017–0994-y
  • 49 Huh JY, Mougios V, Kabasakalis A. et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab 2014; 99: E2154-E2161 doi:10.1210/jc.2014–1437
  • 50 Perakakis N, Triantafyllou GA, Fernandez-Real JM. et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 2017; 13: 324-337 doi:10.1038/nrendo.2016.221
  • 51 Daskalopoulou SS, Cooke AB, Gomez YH. et al. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 2014; 171 (03) 343-352 doi:10.1530/EJE-14–0204
  • 52 Jedrychowski MP, Wrann CD, Paulo JA. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 2015; 22 (04) 734-740 doi:10.1016/j.cmet.2015.08.001
  • 53 McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83-90