Die Wirbelsäule 2018; 02(03): 203-212
DOI: 10.1055/a-0602-1153
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Möglichkeiten zur Optimierung der Implantatstabilität bei osteoporotischen Frakturen der Wirbelsäule

Options for optimizing implant stability in osteoporotic vertebral fractures
Nicolas H. von der Höh
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
,
Ulrich-J. Spiegl
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
,
Jan-Sven Jarvers
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
,
Anna Völker
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
,
Christoph Josten
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
,
Christoph-Eckhard Heyde
Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie Universitätsklinikum Leipzig AöR
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2018 (online)

Zusammenfassung

Versorgungspflichtige osteoporotische Wirbelkörperfrakturen stellen heutzutage mehr denn je eine Herausforderung an Behandler und Gesellschaft dar. In dieser Übersichtsarbeit werden Lösungsansätze und Möglichkeiten zur Optimierung der Implantatstabilität bei osteoporotischen Frakturen aufgezeigt und mit einigen Beispielen illustriert.

Abstract

The osteoporotic fractures of the vertebral body requiring treatment are nowadays a hard challenge for practitioners and patients. In this review, improvement of implant stabilization in osteoporotic fractures are presented and illustrated with some examples.

 
  • Literatur

  • 1 Chapman J, Smith JS, Kopjar B. et al. The AOSpine North America Geriatric Odontoid Fracture Mortality Study: a retrospective review of mortality outcomes for operative versus nonoperative treatment of 322 patients with long-term follow-up. Spine 2013; 38: 1098-1104
  • 2 O’Neill TW, Cockerill W, Matthis C. et al. Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 2004; 15: 760-765
  • 3 Wright NC, Looker AC, Saag KG. et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 2014; 29: 2520-2526
  • 4 Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17: 1726-1733
  • 5 Ray NF, Chan JK, Thamer M. et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12: 24-35
  • 6 Hadji P, Klein S, Gothe H. et al. The epidemiology of osteoporosis--Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110: 52-57
  • 7 Kanis JA, McCloskey EV, Johansson H. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 1: 22-57
  • 8 GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1211-1259
  • 9 Svedbom A, Hernlund E, Ivergård M. et al. EU Review Panel of IOF. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 2013; 8: 137
  • 10 Moug SJ, Stechman M, McCarthy K. et al. Older Persons Surgical Outcomes Collaboration. Frailty and cognitive impairment: Unique challenges in the older emergency surgical patient. Ann R Coll Surg Engl 2016; 98: 165-169
  • 11 Eamer G, Taheri A, Chen SS. et al. Comprehensive geriatric assessment for older people admitted to a surgical service. Cochrane Database Syst Rev 2018; 1: CD012485
  • 12 Liao J-C, Chen W-J. Surgical outcomes in the elderly with degenerative spondylolisthesis, comparative study between patients over 80 years of age and under 80 years – a gender-, diagnosis-, and surgical method-matched two-cohort analyses. Spine J 2018; 18: 734-739
  • 13 Wu Y-S, Zhang H, Zheng W-H. et al. Hidden blood loss and the influential factors after percutaneous kyphoplasty surgery. Eur Spine J 2017; 26: 1878-1883
  • 14 Rechtine GR, Bono PL, Cahill D. et al. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma 2001; 15: 566-569
  • 15 Schnake KJ, Bula P, Spiegl UJ. et al. [Thoracolumbar spinal fractures in the elderly: Classification and treatment]. Unfallchirurg 2017; 120: 1071-1085
  • 16 Heyde C-E, Rohlmann A, Weber U. et al. [Stabilization of the osteoporotic spine from a biomechanical viewpoint]. Orthopade 2010; 39: 407-416
  • 17 LeHuec J-C, Richards J, Tsoupras A. et al. The mechanism in junctional failure of thoraco-lumbar fusions. Part I: Biomechanical analysis of mechanisms responsible of vertebral overstress and description of the cervical inclination angle (CIA). Eur Spine J 2018; 27: 129-138
  • 18 Nardi A, Tarantino U, Ventura L. et al. Domino Effect: mechanic factors role. Clin Cases Miner Bone Metab 2011; 8: 38-42
  • 19 Spiegl U, Jarvers J-S, Heyde C-E. et al. Osteoporotic vertebral body fractures of the thoracolumbar spine: indications and techniques of a 360°-stabilization. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society 2017; 43: 27-33
  • 20 Mayer M, Ortmaier R, Koller H. et al. Impact of Sagittal Balance on Clinical Outcomes in Surgically Treated T12 and L1 Burst Fractures: Analysis of Long-Term Outcomes after Posterior-Only and Combined Posteroanterior Treatment. BioMed Research International 2017; 2017: 1568258
  • 21 Choma TJ, Rechtine GR, McGuire RA. et al. Treating the Aging Spine. The Journal of the American Academy of Orthopaedic Surgeons 2015; 23: e91-e100
  • 22 Shea TM, Laun J, Gonzalez-Blohm SA. et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: Current status. Biomed Res Int 2014; 2014: 748393
  • 23 Hoppe S, Keel MJB. Pedicle screw augmentation in osteoporotic spine: indications, limitations and technical aspects. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society 2017; 43: 3-8
  • 24 Vishnubhotla S, McGarry WB, Mahar AT. et al. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J 2011; 11: 777-781
  • 25 Santoni BG, Hynes RA, McGilvray KC. et al. Cortical bone trajectory for lumbar pedicle screws. Spine J 2009; 9: 366-373
  • 26 Phan K, Ramachandran V, Tran TM. et al. Systematic review of cortical bone trajectory versus pedicle screw techniques for lumbosacral spine fusion. J Spine Sur 2017; 3: 679-688
  • 27 Delgado-Fernandez J, García-Pallero MÁ, Blasco G. et al. Review of Cortical Bone Trajectory: Evidence of a New Technique. Asian Spine Journal 2017; 11: 817-831
  • 28 Lehman RA, Polly DW, Kuklo TR. et al. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine 2003; 28: 2058-2065
  • 29 Derincek A, Wu C, Mehbod A. et al. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J Spinal Disord Tech 2006; 19: 286-291
  • 30 Yu T, Zhang X, Liu J. et al. Superior cortical screw in osteoporotic lumbar vertebrae: A biomechanics and microstructure-based study. Clin Biomech 2018; 53: 14-21
  • 31 Zindrick MR, Wiltse LL, Widell EH. et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 1986; 99-112
  • 32 Hsu C-C, Chao C-K, Wang J-L. et al. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 2005; 23: 788-794
  • 33 Patel PSD, Shepherd DET, Hukins DWL. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys 2010; 32: 822-828
  • 34 Shea TM, Laun J, Gonzalez-Blohm SA. et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. BioMed Int 2014; 2014: 748393
  • 35 Kiyak G, Balikci T, Heydar AM. et al. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model. Asian Spine J 2018; 12: 3-11
  • 36 Paré PE, Chappuis JL, Rampersaud R. et al. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine 2011; 36: E1210-1214
  • 37 Cho K-J, Kim Y-T, Shin S-H. et al. Surgical treatment of adult degenerative scoliosis. Asian Spine Journal 2014; 8: 371-381
  • 38 Schmoelz W, Heinrichs CH, Schmidt S. et al. Timing of PMMA cement application for pedicle screw augmentation affects screw anchorage. Eur Spine J 2017; 26: 2883-2890
  • 39 El-Sharkawi MM, Koptan WMT. et al. Comparison between pedicle subtraction osteotomy and anterior corpectomy and plating for correcting post-traumatic kyphosis: a multicenter study. Eur Spine J 2011; 20: 1434-1440
  • 40 Oberkircher L, Krüger A, Hörth D. et al. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading - a biomechanical investigation. Spine J 2018; 18: 525-531
  • 41 Ding Q, Chen J, Fan J. et al. Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients. Eur Spine J 2017; 26: 2969-2977