Homeopathy 2014; 103(02): 139-142
DOI: 10.1016/j.homp.2013.08.005
Original Paper
Copyright © The Faculty of Homeopathy 2013

Effects of a homeopathic complex on the performance and cortisol levels in Nile tilapia (Oreochromis niloticus)

Luiz Sérgio Merlini
1   Universidade Paranaense, Umuarama, PR, Brazil
,
Lauro Vargas
2   Universidade Estadual de Maringá, Maringá, PR, Brazil
,
Ranulfo Piau Jr.
1   Universidade Paranaense, Umuarama, PR, Brazil
,
Ricardo Pereira Ribeiro
2   Universidade Estadual de Maringá, Maringá, PR, Brazil
,
Natalie Bertelis Merlini
3   Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Botucatu, SP, Brazil
› Author Affiliations
Further Information

Publication History

Received12 December 2012
revised18 July 2013

accepted12 August 2013

Publication Date:
18 December 2017 (online)

Background: Intensive fish farming results in stress adversely effecting the performance of farmed fish. Plasma cortisol is a validated measure of stress in fish. We evaluated the effect of a homeopathic complex on the cortisol level of Nile tilapias (Oreochromis niloticus).

Method: 60 animals with approximate average weight of 100 g each at the start of experiment were randomly distributed in six glass fiber water tanks, capacity 1000 liters, with a daily water renewal rate of 20%. They received one of two treatments: 30 animals in control treatment and 30 animals receiving the homeopathic complex Homeopatila 100. On days 1, 30 and 60, all fish were anesthetized and blood was collected by puncture on the caudal vein, to determine the levels of circulating cortisol.

Results: At the end of the experiment the fish receiving a homeopathic complex, had significantly lower circulating cortisol level (17.96 ng/mL ± 0.95) than the control group (38.68 ng/mL ± 1.21) (p < 0.05).

Conclusions: Cortisol levels were significantly lower in the treated group than control, and the fish were larger in the treated group.

 
  • References

  • 1 Martins M.L.. et al. Falha na resposta do cortisol ao estresse por captura e por carragenina em Piaractus mesopotamicus Hollmberg, l887. Acta Scientiarum 2000; 22: 545-552.
  • 2 Bernier N.J.. The hypothalamic-pituitary-interrenal axis and the control f food intake in teleost fish. Comp Biochem Physiol 2001; 129B: 639-644.
  • 3 Val A.L.. Estresse em peixes – Ajustes fisiológicos e distúrbios orgânicos. Encontro Brssileiro De Patologistas De Organismos Aquáticos, 7 e Encontro Latino-Americano De Patologistas De Organismos Aquáticos, 3, Foz do Iguaçu, PR, Abrapoa 2002; 220 Anais
  • 4 Yada T., Nakanishi Jr. J.J.. Interactions between endocrine and immune system in fish. Inst Rev Cytol 2002; 220: 35-92.
  • 5 Barcellos L.J.G., Souza S.M.G., Lourenço L.F.. Estudos preliminares sobre o cortisol em resposta ao estresse na tilápia no Nilo (Oreochromis niloticus). Vol 224 1997. Bol Inst Pesca; São Paulo: 239-245.
  • 6 Vijayan M.M.. et al. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. Gen Comp Endocrinol 2003; 132: 256-263.
  • 7 Salonius K., Iwama G.K.. Effects of early rearing environment on stress response, immune function, and disease resistance in juvenile coho (Oncorhynchus kisutch) and Chinook salmon (O. tshawytscha). Can J Fish Aquat Sci 1993; 50: 759-766.
  • 8 Mccormick S.D.. et al. Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor 1 and cortisol. Aquaculture Amst 2003; l77: 297-309.
  • 9 Barton B.A., Schreck C.B.. Multiple acute disturbances evoke cumulative physiological stress responses in juvenile Chinook salmon. Trans Am Fish Soc 1987; 115: 245-251.
  • 10 Stratholt M.L.. et al. Stress induced elevation of plasma cortisol in adult female coho salmon, is reflected in egg cortisol content, but does not appear to affect early development. Aquaculture Amst 1997; 158: 141-153.
  • 11 Forsmann L.. et al. Effect of long-term stress on the smolting of two forms of brown trout (Salmo trutta L.). Aquaculture Amst 1998; l68: 49-55.
  • 12 Martins M.L.. et al. Respostas do hibrido tambacu (Piaractus mesopotamicus Holmberg, 1887 macho x Colossoma macropomun Cuvier, 1818 fêmea) a estímulos simples ou consegutivos de captura. Bol Inst Pesca 28 (02) 2002; 195-204.
  • 13 Maule A.G.. et al. Stress alters immune function and disease resistance in Chinook salmon. J Endocrinol 1989; 120: 135-142.
  • 14 Zacarias F.. Avaliação de Substãncias tratadas homeopáticamente no controle da Eimeriose Caprina. In: III encontro de Caprino-ovinocultores de Corte da Bahia. 2003; 81-92 Anais, Salvador, Ba
  • 15 Boyd M.. Water quality in ponds for aquaculture 1990. Aubem University; Birmingham: 482.
  • 16 Kubitza F.. Nutrição e alimentação de peixes cultivados 1998. Fernando Kubitza; Campo Grande: 44.
  • 17 Morgan J.D.. et al. Physiological and respiratory of the Mozambique tilapia to salinity acclimation. Comp Biochem Physiol 117 (03) 1997; 391-398.
  • 18 Foo J.T.W., Lam T.J.. Serum cortisol response to handling stress and the effect of cortisol implantation on testosterone level in the tilapia, Oreschromis mossambicus . Aquaculture Amst 1993; 115: 145-158.
  • 19 Rotlant J., Trot L.. Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol Lond 1997; 511: 21-28.
  • 20 Ruane N.M.. et al. Plasma cortisol and metabolite level profiles in two isogenic strains of common carp during confinement. J Fish Biol Lond 2001; 59: 1-12.
  • 21 Ortuno J.. et al. Effects of short-term crowding stress on the gilthead seabream innate immune response. Fish Shellfish Immunol Aberd 2001; 11: 23-37.
  • 22 Selye H.. Stress and the general adaptation syndrome. Br Med J 1950; 1: 1383-1392.
  • 23 Krieger-Azzolini M.H.. et al. A time-course study of physiological indicators of handling stress in the tropical fish Piaractus mesopotamicus . Bras J Med Biol Res 1989; 22: 1019-1022.
  • 24 Barcelos L.J.G.. et al. Plasma levels of cortisol and glucose in response to capture and tank transference in Rhamdia quelen a South American catfish. Aquac Res Oxford 2001; 32: 121-123.
  • 25 Davis K.B., Parker N.C.. Plasma corticosteroid stress response of fourteen species of warmwater fish to transportation. Trans Am Fish Soc 1986; ll5: 495-499.
  • 26 Nolan. et al. Ambient salinity modulates the response of the tilapia, Oreochromis mossambicus, to net confinement. Aquaculture Amst 1999; 168: 297-309.
  • 27 Iversen M.. et al. Recovery from loading and transport stress in Atlantic salmon smolts. Aquaculture 1998; 168: 387-394.
  • 28 Emata A.C.. Livre transport of pond-reared milkfish C. chanos broodstock. J World Aquac Soc 2000; 31: 279-282.
  • 29 Kubitza F.. Nutrição e alimentação dos peixes. Piracicaba, SP 1997: 74.
  • 30 Mazeaud M.M., Mazeaud F.. Adrenergic responses to stress in fish. Pickering A.D.. Stress and fish. 1981. Academic Press; London: 49-75.
  • 31 McDonald G., Milligan L.. Ionic, osmotic and acid-base regulation in stress. Iwama G.K., Pickering A.D., Sumpter J.P., Schreck C.B.. Fish Stress and Health in Aquaculture. 1997. Cambridge University Press; 199-144.
  • 32 Morgan J.D., Iwama G.K.. Measurements of stressed states in the field. Iwama G.W., Pickering A.D., Sumpter J.P., Schreck C.B.. Fish stress and health in aquaculture. 1997. Cambridge University Press; 247-270.
  • 33 Eddy F.B.. Effects of stress on osmotic and ionic regulation in fish. Aquaculture 1981; 168: 78-82.
  • 34 Auperin B.. et al. Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshwater-adapted tilapia. Gen Comp Endocrinol 1997; 108: 35-44.
  • 35 Volpato G.L.. et al. Heterogeneous growth in fishes: some new data in the Nile tilapia and a general view about the cusal mechanisms. Bol Physiol Anim 1989; 13: 7-22.
  • 36 Nakayama T., Da-Jia L., Ooi A.. Tension changes of stresses and unstressed carp muscle isometric rigor contraction and resolution. Nippon Suisan Gakkaishi 1992; 58: 1517-1522.
  • 37 Saldanha A.C.A.. et al. Estudo comparativo do desempenho entre quatro linhagens de “tilápias” (Oreochromis spp). Congresso Sul Americano De Aquicultura, 1, Recife, 1998. 1998. Simbraq; Recife: 257 Resumos