Homeopathy 2010; 99(04): 249-254
DOI: 10.1016/j.homp.2010.08.002
Original Paper
Copyright © The Faculty of Homeopathy 2010

Homeopathic Symphytum officinale increases removal torque and radiographic bone density around titanium implants in rats

Rubens Spin-Neto
1   UNESP – Univ Estadual Paulista, Araraquara Dental School, Department of Periodontology, Araraquara, São Paulo, Brazil
,
Marina Montosa Belluci
1   UNESP – Univ Estadual Paulista, Araraquara Dental School, Department of Periodontology, Araraquara, São Paulo, Brazil
,
Celso Eduardo Sakakura
2   Barretos Dental School, Barretos Educational Foundation, Brazil
,
Gulnara Scaf
3   UNESP – Univ Estadual Paulista, Araraquara Dental School, Department of Radiology, Araraquara, São Paulo, Brazil
,
Maria Teresa Pepato
4   UNESP – Univ Estadual Paulista, School of Pharmaceutical Sciences of Araraquara, Department of Clinical Biochemistry, Araraquara, Brazil
,
Elcio Marcantonio Jr.
1   UNESP – Univ Estadual Paulista, Araraquara Dental School, Department of Periodontology, Araraquara, São Paulo, Brazil
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received15 December 2009
revised03 August 2010

accepted18 August 2010

Publication Date:
20 December 2017 (online)

Introduction: This study evaluated the effect of Symphytum officinale in homeopathic potency (6cH), on the removal torque and radiographic bone density around titanium implants, inserted in rats tibiae.

Methods: Implants were placed in male rat tibiae, and the animals randomized to two groups (Control and S. officinale 6cH treated), which were evaluated at 7, 14, 28 and 56 days post-implantation. Radiographic bone density was measured at 6 points around the implant, using digital radiographic images, when implants were inserted and at sacrifice. Removal torque of the implants was also evaluated.

Results: Both removal torque and radiographic bone density evaluation showed that S. officinale 6cH treatment enhanced bone formation around the micro-implants, mainly at 14 days. At 56 days, the radiographic bone density was higher in the treated group.

Conclusions: We conclude that S. officinale 6cH enhances, principally at the early stages of osseointegration, bone formation around titanium implants in rats’ tibiae, based on radiographic and mechanical analysis.

 
  • References

  • 1 Grube B., Grunwald J., Krug L., Staiger C. Efficacy of a comfrey root (Symphyti offic. radix) extract ointment in the treatment of patients with painful osteoarthritis of the knee: results of a double-blind, randomised, bicenter, placebo-controlled trial. Phytomedicine 2007; 14: 2-10.
  • 2 Rode D. Comfrey toxicity revisited. Trends Pharmacol Sci 2002; 23: 497-499.
  • 3 Koll R., Buhr M., Dieter R. et al. Efficacy and tolerance of a comfrey root extract (Extr. Rad. Symphyti) in the treatment of ankle distorsions: results of a multicenter, randomized, placebo-controlled, double-blind study. Phytomedicine 2004; 11: 470-477.
  • 4 Kucera M., Barna M., Horacek O., Kalal J., Kucera A., Hladikova M. Topical Symphytum herb concentrate cream against myalgia: a randomized controlled double-blind clinical study. Adv Ther 2005; 22: 681-692.
  • 5 Predel H.G., Giannetti B., Koll R., Bulitta M., Staiger C. Efficacy of a comfrey root extract ointment in comparison to a diclofenac gel in the treatment of ankle distortions: results of an observer-blind, randomized, multicenter study. Phytomedicine 2005; 12: 707-714.
  • 6 Bach N., Thung S.N., Schaffner F. Comfrey herb tea-induced hepatic veno-occlusive disease. Am J Med 1989; 87: 97-99.
  • 7 Oberlies N.H., Kim N.C., Brine D.R. et al. Analysis of herbal teas made from the leaves of comfrey (Symphytum officinale): reduction of N-oxides results in order of magnitude increases in the measurable concentration of pyrrolizidine alkaloids. Public Health Nutr 2004; 7: 919-924.
  • 8 Punzo A. Homeopathic medicine: an overview with specific applications for the orthopaedic patient. Tech Orthop 2003; 18: 54-61.
  • 9 Adell R., Lekholm U., Rockler B., Branemark P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981; 10: 387-416.
  • 10 Jemt T., Lekholm U., Adell R. Osseointegrated implants in the treatment of partially edentulous patients: a preliminary study on 876 consecutively placed fixtures. Int J Oral Maxillofac Implants 1989; 4: 211-217.
  • 11 Branemark P.I., Engstrand P., Ohrnell L.O. et al. Branemark Novum: a new treatment concept for rehabilitation of the edentulous mandible. Preliminary results from a prospective clinical follow-up study. Clin Implant Dent Relat Res 1999; 1: 2-16.
  • 12 Calandriello R., Tomatis M., Rangert B. Immediate functional loading of Branemark system implants with enhanced initial stability: a prospective 1- to 2-year clinical and radiographic study. Clin Implant Dent Relat Res 2003; 5 (Suppl. 01) 10-20.
  • 13 Chiapasco M., Gatti C., Rossi E., Haefliger W., Markwalder T.H. Implant-retained mandibular overdentures with immediate loading. A retrospective multicenter study on 226 consecutive cases. Clin Oral Implants Res 1997; 8: 48-57.
  • 14 Sul Y.T., Jeong Y., Johansson C., Albrektsson T. Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1—experimental implants. Clin Oral Implants Res 2006; 17: 521-526.
  • 15 Jonas W.B., Kaptchuk T.J., Linde K. A critical overview of homeopathy. Ann Intern Med 2003; 138: 393-399.
  • 16 Almeida R.M. A critical review of the possible benefits associated with homeopathic medicine. Rev Hosp Clin Fac Med Sao Paulo 2003; 58: 324-331.
  • 17 Hobbs B. Homeopathy: a potent alternative. J Fam Plann Reprod Health Care 2003; 29: 6-7.
  • 18 Fisher P. How does homeopathy work: are we looking in the right place?. Homeopathy 2003; 92: 1-2.
  • 19 Majewsky V., Arlt S., Shah D. et al. Use of homeopathic preparations in experimental studies with healthy plants. Homeopathy 2009; 98: 228-243.
  • 20 Sakakura C.E., Neto R.S., Bellucci M., Wenzel A., Scaf G., Marcantonio E. Jr. Influence of homeopathic treatment with comfrey on bone density around titanium implants: a digital subtraction radiography study in rats. Clin Oral Implants Res 2008; 19: 624-628.
  • 21 Giro G., Goncalves D., Sakakura C.E., Pereira R.M., Marcantonio Jr. E., Orrico S.R. Influence of estrogen deficiency and its treatment with alendronate and estrogen on bone density around osseointegrated implants: radiographic study in female rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105: 162-167.
  • 22 Sakakura C.E., Giro G., Goncalves D., Pereira R.M., Orrico S.R., Marcantonio Jr. E. Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats. Clin Oral Implants Res 2006; 17: 134-138.
  • 23 Sakakura C.E., Margonar R., Sartori R., Morais J.A., Marcantonio Jr. E. The influence of cyclosporin A on mechanical retention of dental implants previously integrated to the bone: a study in rabbits. J Periodontol 2006; 77: 2059-2062.
  • 24 Kanagaraja S., Wennerberg A., Eriksson C., Nygren H. Cellular reactions and bone apposition to titanium surfaces with different surface roughness and oxide thickness cleaned by oxidation. Biomaterials 2001; 22: 1809-1818.
  • 25 Stickel F., Patsenker E., Schuppan D. Herbal hepatotoxicity. J Hepatol 2005; 43: 901-910.
  • 26 Madrewar B.P. Veterinary homeopathy: a natural system of medicine with no side-effects. New Delhi: B. Jain; 2006.
  • 27 Endler P., Thieves K., Reich C. et al. Repetitions of fundamental research models for homeopathically prepared dilutions beyond 10(–23): a bibliometric study. Homeopathy 2010 Jan; 99 (01) 25-36.
  • 28 Stock-Schroer B., Albrecht H., Betti L. et al. Reporting experiments in homeopathic basic research (REHBaR)—a detailed guideline for authors. Homeopathy 2009; 98: 287-298.
  • 29 Overall K.L., Dunham A.E. Homeopathy and the curse of the scientific method. Vet J 2009; 180: 141-148.
  • 30 Bausell R.B. Snake oil science: the truth about complementary and alternative medicine. Oxford; New York: Oxford University Press; 2007.
  • 31 Albrektsson T., Albrektsson B. Osseointegration of bone implants. A review of an alternative mode of fixation. Acta Orthop Scand 1987; 58: 567-577.
  • 32 Giro G., Sakakura C.E., Goncalves D., Pereira R.M., Marcantonio Jr. E., Orrico S.R. Effect of 17 beta-estradiol and alendronate on the removal torque of osseointegrated titanium implants in ovariectomized rats. J Periodontol 2007; 78: 1316-1321.
  • 33 Narai S., Nagahata S. Effects of alendronate on the removal torque of implants in rats with induced osteoporosis. Int J Oral Maxillofac Implants 2003; 18: 218-223.
  • 34 Stickel F., Seitz H.K. The efficacy and safety of comfrey. Public Health Nutr 2000; 3: 501-508.
  • 35 Hachem J.P., De Paepe K., Vanpee E., Kaufman L., Rogiers V., Roseeuw D. Combination therapy improves the recovery of the skin barrier function: an experimental model using a contact allergy patch test combined with TEWL measurements. Dermatology 2001; 202: 314-319.
  • 36 Hsu S. Green tea and the skin. J Am Acad Dermatol 2005; 52: 1049-1059.
  • 37 Wang Y., Wei X., Xiao X. et al. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J Pharmacol Exp Ther 2005; 314: 522-532.
  • 38 Guo L., Mei N., Dial S., Fuscoe J., Chen T. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver. BMC Bioinformatics 2007; 8 (Suppl. 07) S22.
  • 39 Abbott P.J. Comfrey: assessing the low-dose health risk. Med J Aust 1988; 149: 678-682.
  • 40 Nakano Y., Beertsen W., van den Bos T., Kawamoto T., Oda K., Takano Y. Site-specific localization of two distinct phosphatases along the osteoblast plasma membrane: tissue non-specific alkaline phosphatase and plasma membrane calcium ATPase. Bone 2004; 35: 1077-1085.
  • 41 Johnson C.S., Jerome C.P., Brommage R. Unbiased determination of cytokine localization in bone: colocalization of interleukin-6 with osteoblasts in serial sections from monkey vertebrae. Bone 2000; 26: 461-467.