Methods Inf Med 2009; 48(03): 236-241
DOI: 10.3414/ME9223
Original Articles
Schattauer GmbH

Estimation of Distribution Algorithms as Logistic Regression Regularizers of Microarray Classifiers

C. Bielza
1   Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain
V. Robles
2   Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Spain
P. Larrañaga
1   Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain
› Author Affiliations
Further Information

Publication History

31 March 2009

Publication Date:
17 January 2018 (online)


Objectives: The “large k (genes), small N (samples)” phenomenon complicates the problem of microarray classification with logistic regression. The indeterminacy of the maximum likelihood solutions, multicollinearity of predictor variables and data over-fitting cause unstable parameter estimates. Moreover, computational problems arise due to the large number of predictor (genes) variables. Regularized logistic regression excels as a solution. However, the difficulties found here involve an objective function hard to be optimized from a mathematical viewpoint and a careful required tuning of the regularization parameters.

Methods: Those difficulties are tackled by introducing a new way of regularizing the logistic regression. Estimation of distribution algorithms (EDAs), a kind of evolutionary algorithms, emerge as natural regularizers. Obtaining the regularized estimates of the logistic classifier amounts to maximizing the likelihood function via our EDA, without having to be penalized. Likelihood penalties add a number of difficulties to the resulting optimization problems, which vanish in our case. Simulation of new estimates during the evolutionary process of EDAs is performed in such a way that guarantees their shrinkage while maintaining their probabilistic dependence relationships learnt. The EDA process is embedded in an adapted recursive feature elimination procedure, thereby providing the genes that are best markers for the classification.

Results: The consistency with the literature and excellent classification performance achieved with our algorithm are illustrated on four microarray data sets: Breast, Colon, Leukemia and Prostate. Details on the last two data sets are available as supplementary material.

Conclusions: We have introduced a novel EDA-based logistic regression regularizer. It implicitly shrinks the coefficients during EDA evolution process while optimizing the usual likelihood function. The approach is combined with a gene subset selection procedure and automatically tunes the required parameters. Empirical results on microarray data sets provide sparse models with confirmed genes and performing better in classification than other competing regularized methods.

  • References

  • 1 Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armañanzas R, Santafé G, Pérez A, Robles V. Machine learning in bioinformatics. Briefings in Bioinformatics 2006; 17 (01) 86-112.
  • 2 Dugas M, Weninger F, Merk S, Kohlmann A, Haferlach T. A generic concept for large-scale microarray analysis dedicated to medical diagnostics. Methods Inf Med 2006; 45 (02) 146-152.
  • 3 Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd edn. New York: J. Wiley and Sons; 2000
  • 4 Thisted RA. Elements of Statistical Computing. New York: Chapman and Hall; 1988
  • 5 Markowetz F, Spang R. Molecular diagnosis classification, model selection and performance evaluation. Methods Inf Med 2005; 44 (03) 438-443.
  • 6 Weber G, Vinterbo S, Ohno-Machado L. Multivariate selection of genetic markers in diagnostic classification. Artif Intell Med 2004; 31: 155-167.
  • 7 Heckerling PS, Gerber BS, Tape TG, Wigton R. Selection of predictor variables for pneumonia using neural networks and genetic algorithms. Methods Inf Med 2005; 44 (01) 89-97.
  • 8 Lee A, Silvapulle M. Ridge estimation in logistic regression. Comm Statist Simulation Comput 1988; 17: 1231-1257.
  • 9 Lozano JA, Larrañaga P, Inza I, Bengoetxea E. (eds). Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. New York: Springer; 2006
  • 10 Minka T. A comparison of numerical optimizers for logistic regression. Tech Rep 758, Carnegie Mellon University; 2003
  • 11 Keerthi SS, Duan KB, Shevade SK, Poo AN. A fast dual algorithm for kernel logistic regression. Mach Learning 2005; 61: 151-165.
  • 12 Eilers P, Boer J, van Ommen G, van Houwelingen H. Classification of microarray data with penalized logistic regression. In: Proc of SPIE. Progress in Biomedical Optics and Images. 2001 Volume 4266 (2): 187-198.
  • 13 Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics 2004; 5: 427-443.
  • 14 Shen L, Tan EC. Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE Trans Comput Biol Bioinformatics 2005; 2: 166-175.
  • 15 Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learning 2002; 46: 389-422.
  • 16 Shevade SK, Keerthi SS. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 2003; 19: 2246-2253.
  • 17 Cawley GC, Talbot N. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 2006; 22: 2348-2355.
  • 18 Koh K, Kim SY, Boyd S. An interior-point method for large-scale L1-regularized logistic regression. J Mach Learn Res 2007; 8: 1519-1555.
  • 19 Krishnapuram B, Carin L, Figueiredo M, Harte-mink A. Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 2005; 27: 957-968.
  • 20 Robles V, Bielza C, Larrañaga P, González S, OhnoMachado L. Optimizing logistic regression coefficients for discrimination and calibration using estimation of distribution algorithms. TOP 2008; 16: 345-366.
  • 21 Larrañaga P, Etxeberria R, Lozano JA, Peña JM. Optimization in continuous domains by learning and simulation of Gaussian networks. In: Workshop in Optimization by Building and Using Probabilistic Models. Genetic and Evolutionary Computation Conference, GECCO 2000 pp 201-204.
  • 22 González C, Lozano JA, Larrañaga P. Mathematical modelling of UMDAc algorithm with tournament selection Behaviour on linear and quadratic functions. Internat J Approx Reason 2002; 31: 313-340.
  • 23 Shachter R, Kenley C. Gaussian influence diagrams. Manag Sci 1989; 35: 527-550.
  • 24 Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002; 97: 77-87.
  • 25 West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 2001; 98 (20) 11462-11467.
  • 26 Inza I, Larrañaga P, Blanco R, Cerrolaza A. Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 2004; 31: 91-103.
  • 27 Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 2004; 20: 374-380.
  • 28 Alon U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide micro-arrays. Proc Natl Acad Sci USA 1999; 96: 6745-6750.
  • 29 Golub TR. et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1996; 286: 531-537.
  • 30 Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203-209.
  • 31 Fort G, Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics 2005; 21: 1104-1111.
  • 32 Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Marja Jaattela M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 2005; 19: 570-582.
  • 33 Chiappetta G, Botti G, Monaco M, Pasquinelli R, Pentimalli F, Di Bonito M, D’Aiuto G, Fedele M, Iuliano R, Palmieri EA, Pierantoni GM, Giancotti V, Fusco A. HMGA1 protein overexpression in human breast carcinomas: Correlation with ErbB2 expression. Clin Cancer Res 2004; 10: 7637-7644.
  • 34 Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, Middea E, Cascio S, Brunelli E, Ando S, Surmacz E. Expression of nuclear insulin receptor substrate 1 in breast cancer. J Clin Pathol 2007; 60: 633-641.
  • 35 Turner GA, Ellis RD, Guthrie D, Latner AL, Monaghan JM, Ross WM, Skillen AW, Wilson RG. Urine cyclic nucleotide concentrations in cancer and other conditions; cyclic GMP: A potential marker for cancer treatment. J Clin Pathol 2004; 35 (08) 800-806.
  • 36 Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C, Gaddis S, Sahin A, Baggerly K, Aldaz CM. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res 2004; 6: 499-513.
  • 37 Liu Z, Jiang F, Tian G, Wang S, Sato F, Meltzer SJ, Tan M. Sparse logistic regression with Lp penalty for biomarker identification. Statistical Applications in Genetics and Molecular Biology. 2007 6: Article 6.
  • 38 Furlanello C, Serafini M, Merler S, Jurman G. Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinform 2003; 4: 54.
  • 39 Gardina PJ. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 2006; 7: 325.
  • 40 Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Onco-gene 2002; 21: 4120-4128.
  • 41 Ma S, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 2005; 21: 4356-4362.