Methods Inf Med 2018; 57(01/02): 01-42
DOI: 10.3414/ME17-05-0006
Review Articles
Schattauer GmbH

A Systematic Review of Coding Systems Used in Pharmacoepidemiology and Database Research

Yong Chen
1   GlaxoSmithKline, Inc., Collegeville, PA, USA
Marko Zivkovic
2   Genesis Research, Hoboken, NJ, USA
Tongtong Wang
3   Merck & Co, Inc., Kenilworth, NJ, USA
Su Su
4   Merck Research Laboratories, Rahway, NJ, USA
Jianyi Lee
2   Genesis Research, Hoboken, NJ, USA
Edward A. Bortnichak
3   Merck & Co, Inc., Kenilworth, NJ, USA
› Author Affiliations
Further Information

Publication History

received: 29 June 2017

accepted: 09 February 2018

Publication Date:
05 April 2018 (online)


Background: Clinical coding systems have been developed to translate real-world healthcare information such as prescriptions, diagnoses and procedures into standardized codes appropriate for use in large healthcare datasets. Due to the lack of information on coding system characteristics and insufficient uniformity in coding practices, there is a growing need for better understanding of coding systems and their use in pharmacoepidemiology and observational real world data research.

Objectives: To determine: 1) the number of available coding systems and their characteristics, 2) which pharmacoepidemiology databases are they adopted in, 3) what outcomes and exposures can be identified from each coding system, and 4) how robust they are with respect to consistency and validity in pharmacoepidemiology and observational database studies.

Methods: Electronic literature database and unpublished literature searches, as well as hand searching of relevant journals were conducted to identify eligible articles discussing characteristics and applications of coding systems in use and published in the English language between 1986 and 2016. Characteristics considered included type of information captured by codes, clinical setting(s) of use, adoption by a pharmacoepidemiology database, region, and available mappings. Applications articles describing the use and validity of specific codes, code lists, or algorithms were also included. Data extraction was performed independently by two reviewers and a narrative synthesis was performed.

Results: A total of 897 unique articles and 57 coding systems were identified, 17% of which included country-specific modifications or multiple versions. Procedures (55%), diagnoses (36%), drugs (38%), and site of disease (39%) were most commonly and directly captured by these coding systems. The systems were used to capture information from the following clinical settings: inpatient (63%), ambulatory (55%), emergency department (ED, 34%), and pharmacy (13%). More than half of all coding systems were used in Europe (59%) and North America (57%). 34% of the reviewed coding systems were utilized in at least 1 of the 16 pharmacoepidemiology databases of interest evaluated. 21% of coding systems had studies evaluating the validity and consistency of their use in research within pharmacoepidemiology databases of interest. The most prevalent validation method was comparison with a review of patient charts, case notes or medical records (64% of reviewed validation studies). The reported performance measures in the reviewed studies varied across a large range of values (PPV 0-100%, NPV 6-100%, sensitivity 0-100%, specificity 23-100% and accuracy 16-100%) and were dependent on many factors including coding system(s), therapeutic area, pharmacoepidemiology database, and outcome.

Conclusions: Coding systems vary by type of information captured, clinical setting, and pharmacoepidemiology database and region of use. Of the 57 reviewed coding systems, few are routinely and widely applied in pharmacoepidemiology database research. Indication and outcome dependent heterogeneity in coding system performance suggest that accurate definitions and algorithms for capturing specific exposures and outcomes within large healthcare datasets should be developed on a case-by-case basis and in consultation with clinical experts.

  • References

  • 1 Grubber TR. A Translation Approach to Portable Ontology Specifications. Knowl Acquis 1993; 05 (02) 199-220.
  • 2 Bodenreider O, Mitchell JA, McCray AT. Biomedical ontologies. Pacific Symp Biocomput 2005; 76-78.
  • 3 Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb Med Inform 2008; 67-79.
  • 4 Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR. A systematic literature review of automated clinical coding and classification systems. J Am Med Inform Assoc 2010; 17 (06) 646-651.
  • 5 Cimino JJ. Review paper: Coding Systems in Health Care. Methods Inf Med 1996; 35: 273-284.
  • 6 Chute CG, Cohn SP, Campbell KE, Oliver DE, Campbell JR. The Content Coverage of Clinical Classifications. Emerg Infect Dis 1996; 03 (03) 224-233.
  • 7 Springate DA, Kontopantelis E, Ashcroft DM, Olier I, Parisi R, Chamapiwa E. et al. Clinical-Codes: an online clinical codes repository to improve the validity and reproducibility of research using electronic medical records. PLoS One 2014; 09 (06) e99825.
  • 8 AHIMA. AHIMA Standards of Ethical Coding [Internet]. 2008 Available from:
  • 9 O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring diagnoses: ICD code accuracy. Health Serv Res 2005; 40 (5 Pt 2): 1620-1639.
  • 10 Joseph KS, Fahey J. Validation of perinatal data in the Discharge Abstract Database of the Canadian Institute for Health Information. Chronic Dis Can 2009; 29 (03) 96-100.
  • 11 De Lusignan S, Minmagh C, Kennedy J, Zeimet M, Bommezijn H, Bryant J. A survey to identify the clinical coding and classification systems currently in use across Europe. In: Studies in Health Technology and Informatics 2001; 86-89.
  • 12 International Society for Pharmacoeconomics and Outcomes Research. ISPOR Scientific Presentations Database [Internet]. 2016 Available from:
  • 13 OMOP Vocabulary Team. ATHENA Download Page: Standardized Vocabularies for OMOP CDM [Internet]. 2016 Available from:
  • 14 Bridge to Data. Bridge to Data [Internet]. 2016 Available from:
  • 15 De Lusignan S. Codes, classifications, terminologies and nomenclatures: Definition, development and application in practice. Inform Prim Care 2005; 13 (01) 65-69.
  • 16 Busse R, Geissler A, Aaviksoo A, Cots F, Hakkinen U, Kobel C. et al. Diagnosis related groups in Europe: moving towards transparency, efficiency, and quality in hospitals?. Vol. 346, McGraw Hill; 2013: f3179.
  • 17 Australian Consortium for Classification Development. ICD-10-AM/ACHI/ACS [Internet]. 2016 [cited 2016 Sep 6]. Available from:
  • 18 Eurostat. Health care activities [Internet]. 2016 Available from:
  • 19 Marušič D, Rupel VP, Ceglar J. DRG Implementation in Slovenia – Lessons Learned [Internet]. 2013 Available from:
  • 20 Guardia A, Meyer R, Rohner P. The CASSANDRE Project: automated alerts for optimal coding of diagnosis and interventions. World Hosp Heal Serv Off J Int Hosp Fed 2013; 49 (04) 21-24.
  • 21 Benson T. The history of the Read Codes: The inaugural James Read memorial lecture 2011. Inform Prim Care 2011; 19 (03) 173-182.
  • 22 World Health Organization (WHO). International Standard [Internet]. 2016 [cited 2016 Aug 30]. Available from:
  • 23 Jetté N, Quan H, Hemmelgarn B, Drosler S, Maass C, Moskal L. et al. The development, evolution, and modifications of ICD-10: challenges to the international comparability of morbidity data. Med Care 2010; 48 (12) 1105-1110.
  • 24 Choi Y, Jung C, Chae Y, Kang M, Kim J, Joung K. et al. Comparison of validity of mapping between drug indications and ICD-10: Direct and indirect terminology based approaches. Methods Inf Med 2014; 53 (03) 195-201.
  • 25 Averill RF, Mullin RL, Steinbeck BA, Goldfield NI, Grant TM. Development of the ICD-10 procedure coding system (ICD-10-PCS). Top Health Inf Manage 2001; 21 (03) 54-88.
  • 26 Lamarche-Vadel A, Pavillon G, Aouba A, Johansson LA, Meyer L, Jougla E. et al. Automated comparison of last hospital main diagnosis and underlying cause of death ICD10 codes, France, 2008–2009. BMC Med Inform Decis Mak 2014; 14 (01) 44.
  • 27 Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin L, Parkin D. et al. International Classification of Diseases for Oncology. 3rd ed.. WHO; 2000
  • 28 Charity MJ, French SD, Forsdike K, Britt H, Polus B, Gunn J. Extending ICPC-2 PLUS terminology to develop a classification system specific for the study of chiropractic encounters. Chiropr Man Therap 2013; 21 (01) 4.
  • 29 De Lusignan S. What is primary care informatics?. J JAMIA 2003; 10 (July/August): 304-309.
  • 30 Nordic Medico-Statistical Committee. NOMESCO Classification of Surgical Procedures (NCSP), version 1.15 [Internet]. Oslo. 2010 Available from:
  • 31 Strang N, Cucherat M, Boissel JP. Which coding system for therapeutic information in evidencebased medicine. Comput Methods Programs Biomed 2002; 68 (01) 73-85.
  • 32 Henson DE, Ries L, Freedman LS, Carriaga M. Relationship among outcome, stage of disease, and histologic grade for 22,616 cases of breast cancer. The basis for a prognostic index. Cancer 1991; 68 (10) 2142-2149.
  • 33 Rice TW, Rusch VW, Ishwaran H, Blackstone EH. Cancer of the esophagus and esophagogastric junction: Data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer 2010; 116 (16) 3763-3773.
  • 34 Heerkens Y, Bougie T, Claus E. The use of the ICF in the process of supplying assistive products: discussion paper based on the experience using a general Dutch prescription guideline. Prosthet Orthot Int 2011; 35 (03) 310-317.
  • 35 International Society for Nomenclature of Pediatric and Congenital Heart Disease (ISNPCHD). International Society for Nomenclature of Paediatric and Congenital Heart Disease [Internet]. 2016 [cited 2016 Oct 31]. Available from:
  • 36 Endicott M, Fletcher K. Mentally prepare for psychiatric classification changes. J Am Heal Inf Manag Assoc 2013; 84 (10) 74-76.
  • 37 International Headache Society. The International Classification of Headache Disorders 3rd edition (Beta version) [Internet]. 2016 Available from:
  • 38 US National Library of Medicine. ICD-9-CM Diagnostic Codes to SNOMED CT Map [Internet]. 2016 [cited 2016 Oct 31]. Available from:
  • 39 US National Library of Medicine. ICD-9-PCS Procedure Codes to SNOMED CT Map [Internet]. 2016 Available from:
  • 40 Archer A, Campbell A, D’Amato C, McLeod M, Rugg D. Putting the ICD-10-CM/PCS GEMs into Practice (Updated). J AHIMA 2016; 87 (01) 48-53.
  • 41 Krive J, Patel M, Gehm L, Mackey M, Kulstad E, Li JJ. et al. The complexity and challenges of the international classification of diseases, ninth revision, clinical modification to international classification of diseases, 10th revision, clinical modification transition in EDs. Am J Emerg Med 2015; 33 (05) 713-718.
  • 42 Karlsson D, Nyström M, Cornet R. Does SNOMED CT post-coordination scale?. In: Studies in Health Technology and Informatics 2014; 1048-1052.
  • 43 Thomas BS, Jafarzadeh SR, Warren DK, McCormick S, Fraser VJ, Marschall J. Temporal trends in the systemic inflammatory response syndrome, sepsis, and medical coding of sepsis. BMC Anesthesiol 2015; 15 (01) 169.
  • 44 Stantz R. ICD-10 in practice: case studies in using the new coding system. Med Econ 2014; 91 (03) 66-67.
  • 45 Januel J-M, Luthi J-C, Quan H, Borst F, Taffé P, Ghali WA. et al. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data. BMC Health Serv Res 2011; 11 (01) 194.
  • 46 Abbott AM, Habermann EB, Parsons HM, Tuttle T, Al-Refaie W. Prognosis for primary retroperitoneal sarcoma survivors: A conditional survival analysis. Cancer 2012; 118 (13) 3321-3329.
  • 47 Beaty L. A primer for understanding diagnosis-related groups and inpatient hospital reimbursement with nursing implications. Crit Care Nurs Q 2005; 28 (04) 360-369.
  • 48 Jafarzadeh SR, Thomas BS, Marschall J, Fraser VJ, Gill J, Warren DK. Quantifying the improvement in sepsis diagnosis, documentation, and coding: The marginal causal effect of year of hospitalization on sepsis diagnosis. Ann Epidemiol 2016; 26 (01) 66-70.
  • 49 Curtis JR, Chen S-YY, Werther W, John A, Johnson DA. Validation of ICD-9-CM codes to identify gastrointestinal perforation events in administrative claims data among hospitalized rheumatoid arthritis patients. Pharmacoepidemiol Drug Saf 2011; 20 (11) 1150-1158.
  • 50 Cipparone CW, Withiam-Leitch M, Kimminau KS, Fox CH, Singh R, Kahn L. Inaccuracy of ICD-9 Codes for Chronic Kidney Disease: A Study from Two Practice-based Research Networks (PBRNs). J Am Board Fam Med 2015; 28 (05) 678-682.
  • 51 Hinkle-Azzara B, Carr KJ. Bird’s eye view of ICD-10 documentation gap. Vendor analysis offers big picture look at nationwide: documentation holes--and how to fill them. J AHIMA 2014; 85 (06) 34-39.
  • 52 Denburg MR, Haynes K, Shults J, Lewis JD, Leonard MB. Validation of The Health Improvement Network (THIN) database for epidemiologic studies of chronic kidney disease. Pharmacoepidemiol Drug Saf 2011; 20 (11) 1138-1149.
  • 53 Cheng L, Swartz MD, Zhao H, Kapadia AS, Lai D, Rowan PJ. et al. Hazard of Recurrence among Women after Primary Breast Cancer Treatment--A 10-Year Follow-up Using Data from SEER-Medicare. Cancer Epidemiol Biomarkers Prev 2012; 21 (05) 800-809.
  • 54 Singletary SE, Connolly JL. Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual. CA Cancer J Clin. 2006 56(1): 37–47–51.
  • 55 Chen V, Ruiz B, Hsieh M-C, Wu X-C, Ries L, Lewis D. Analysis of stage and clinical/prognostic factors for colon and rectal cancer from seer registries: Ajcc and collaborative stage data collection system. Dev Biol 2004; 276 (02) 391-402.
  • 56 Williams RM. The costs of visits to emergency departments. N Engl J Med 1996; 334 (10) 642-646.
  • 57 Smith S, Cell P, Anderson L, Larson T. Minnesota Department of Human Services audit of medication therapy management programs. J Am Pharm Assoc (2003) 2014; 53 (03) 248-253.
  • 58 Comfort A. Coding open fractures in ICD-10-CM. J AHIMA 2012; 83 (09) 64-66.
  • 59 National Uniform Claim Committee. Health Care Provider Taxonomy [Internet]. 2016 [cited 2016 Aug 30]. Available from:
  • 60 Food and Drug Administration (FDA). National Drug Code Directory [Internet]. 2016 [cited 2016 Sep 1]. Available from:
  • 61 Wolters Kluwer Clinical Drug Information. Why Medi-Span? | Clinical Drug Information [Internet]. 2016 [cited 2016 Oct 10]. Available from:
  • 62 DeVault K. ICD-10-PCS root operation groups, part 3: Root operations that alter the diameter/route of a tubular body part and that define other repairs. J AHIMA 2010; 81 (09) 72-74.
  • 63 Beitia AO, Kuperman G, Delman BN, Shapiro JS. Assessing the performance of LOINC® and RadLex for coverage of CT scans across three sites in a health information exchange. AMIA Annu Symp Proc 2013; 2013: 94-102.
  • 64 Le Coultre R, Aroua A, Samara E, Rochat M, Coendoz S, Verdun F. Exploring the use of the Swiss medical tariffication codes (TARMED) in the establishment of the frequency of radiodiagnostic examinations. Swiss Med Wkly. 2012 142(w13677).
  • 65 Deckard J, McDonald CJ, Vreeman DJ. Supporting interoperability of genetic data with LOINC. J JAMIA 2015; 22 (03) 621-627.
  • 66 Chen CL, Lin GA, Bardach NS, Clay TH, Boscardin WJ, Gelb AW. et al. Preoperative Medical Testing in Medicare Patients Undergoing Cataract Surgery. N Engl J Med 2015; 372 (16) 1530-1538.
  • 67 Womack JA, Scotch M, Leung SN, Skanderson M, Bathulapalli H, Haskell SG. et al. Use of structured and unstructured data to identify contraceptive use in women veterans. Perspect Health Inf Manag 2013; 10: 1e.
  • 68 White A, Vernon SW, Franzini L, Du XL. Racial and ethnic disparities in colorectal cancer screening persisted despite expansion of medicare’s screening reimbursement. Cancer Epidemiol Biomarkers Prev 2011; 20 (05) 811-817.
  • 69 De Achaval S, Feudtner C, Palla S, Suarez-Almazor ME. Validation of ICD-9-CM codes for identification of acetaminophen-related emergency department visits in a large pediatric hospital. BMC Health Serv Res 2013; 13 (01) 72.
  • 70 Nordstrom BL, Whyte JL, Stolar M, Mercaldi C, Kallich JD. Identification of metastatic cancer in claims data. Pharmacoepidemiol Drug Saf 2012; 21 (SUPPL.2): 21-28.
  • 71 Endicott M. Taking the Sting out of Injection and Infusion Coding. J AHIMA 2012; 83 (11) 74-76. quiz 77.
  • 72 Allen LA, Yood MU, Wagner EH, Aiello EJBowles, Pardee R, Wellman R. et al. Performance of Claims-based Algorithms for Identifying Heart Failure and Cardiomyopathy Among Patients Diagnosed With Breast Cancer. Med Care 2014; 52 (05) e30-38.
  • 73 Paulozzi LJ, Jones C, Mack K RR. Vital signs: overdoses of prescription opioid pain relievers - United States, 1999-2008. MMWR Morb Mortal Wkly Rep 2011; 60 (43) 1487-1492.
  • 74 Hsieh C-Y, Lai EC-C, Yang Y-HK, Lin S-J. Comparative stroke risk of antiepileptic drugs in patients with epilepsy. Epilepsia 2013; 54 (01) 172-180.
  • 75 Hviid A, Melbye M, Pasternak B. Use of Selective Serotonin Reuptake Inhibitors during Pregnancy and Risk of Autism. N Engl J Med 2013; 369 (25) 2406-2415.
  • 76 Chawla N, Yabroff KR, Mariotto A, McNeel TS, Schrag D, Warren JL. Limited validity of diagnosis codes in Medicare claims for identifying cancer metastases and inferring stage. Ann Epidemiol 2014; 24 (09) 666-672.
  • 77 Li R, Shrestha SS, Lipman R, Burrows NR, Kolb LE, Rutledge S. et al. Diabetes self-management education and training among privately insured persons with newly diagnosed diabetes--United States, 2011–2012. Morb Mortal Wkly Rep 2014; 63 (46) 1045-1049.
  • 78 Mera RM, Beach KJ, Powell GE, Pattishall EN. Semi-automated risk estimation using large databases: Quinolones and clostridium difficile associated diarrhea. Pharmacoepidemiol Drug Saf 2010; 19 (06) 610-617.
  • 79 Metcalfe A, Sibbald B, Lowry RB, Tough S, Bernier FP. Validation of congenital anomaly coding in Canada’s administrative databases compared with a congenital anomaly registry. Birth Defects Res Part A – Clin Mol Teratol 2014; 100 (02) 59-66.
  • 80 Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin 2010; 60 (05) 277-300.
  • 81 Haque R, Yood MU, Geiger AM, Kamineni A, Avila CC, Shi J. et al. Long-term safety of radiotherapy and breast cancer laterality in older survivors. Cancer Epidemiol Biomarkers Prev 2011; 20 (10) 2120-2126.
  • 82 Sutherland JM, Steinum O. Hospital factors associated with clinical data quality. Health Policy (New York) 2009; 91 (03) 321-326.
  • 83 Walker RL, Hennessy DA, Johansen H, Sambell C, Lix L, Quan H. Implementation of ICD-10 in Canada: how has it impacted coded hospital discharge data?. BMC Health Serv Res 2012; 12 (149) 149.
  • 84 Daneshvar P, Forster AJ, Dervin GF. Accuracy of administrative coding in identifying hip and knee primary replacements and revisions. J Eval Clin Pract 2012; 18 (03) 555-559.
  • 85 Hsieh C-Y, Chen C-H, Li C-Y, Lai M-L. Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. J Formos Med Assoc 2015; 114 (03) 254-259.
  • 86 Cheng C-L, Lee C-H, Chen P-S, Li Y-H, Lin S-J, Yang Y-HK. Validation of Acute Myocardial Infarction Cases in the National Health Insurance Research Database in Taiwan. J Epidemiol 2014; 24 (06) 500-507.
  • 87 Cohen FJ, Neslusan CA, Conklin JE SX. Recent Antihyperglycemic Prescribing Trends for U.S. Privately Insured Patients With Type 2 Diabetes. Diabetes Care 2003; 26 (06) 1847-1851.
  • 88 Engels EA, Parsons R, Besson C, Morton LM, Enewold L, Ricker W. et al. Comprehensive Evaluation of Medical Conditions Associated with Risk of Non-Hodgkin Lymphoma using Medicare Claims (“MedWAS”). Cancer Epidemiol Biomarkers Prev 2016; 25 (07) 1105-1113.
  • 89 Kruzikas D, Smith JS, Harley C, Buzinec P. Costs associated with management of cervical human papillomavirus-related conditions. Cancer Epidemiol Biomarkers Prev 2012; 21 (09) 1469-1478.
  • 90 Lindenauer PK, Pekow P, Wang K, Gutierrez B, Benjamin EM. Lipid-lowering therapy and in-hospital mortality following major noncardiac surgery. JAMA 2004; 291 (17) 2092-2099.
  • 91 Neubert A, Sturkenboom MC, Murray ML, Verhamme KM, Nicolosi A, Giaquinto C. et al. Databases for pediatric medicine research in Europe-assessment and critical appraisal. Pharmacoepidemiol Drug Saf 2008; 17 (12) 1155-1167.
  • 92 Xu B, Boero IJ, Hwang L, Le Q-T, Moiseenko V, Sanghvi PR. et al. Aspiration pneumonia after concurrent chemoradiotherapy for head and neck cancer. Cancer 2015; 121 (08) 1303-1311.
  • 93 Shen C, Shih YCT, Xu Y, Yao JC. Octreotide longacting repeatable use among elderly patients with carcinoid syndrome and survival outcomes: a population-based analysis. Cancer 2014; 120 (13) 2039-2049.
  • 94 Cerhan JR, Parker AS, Putnam SD, Chiu BCH, Lynch CF, Cohen MB. et al. Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev 1999; 08 (01) 53-60.
  • 95 Clarke CA, Undurraga DM, Harasty PJ, Glaser SL, Morton LM, Holly EA. Changes in cancer registry coding for lymphoma subtypes: Reliability over time and relevance for surveillance and study. Cancer Epidemiol Biomarkers Prev 2006; 15 (04) 630-638.
  • 96 Centers for Disease Control and Prevention. ICD-9-CM Official Guidelines for Coding and Reporting [Internet]. 2011 Available from:
  • 97 American Medical Association. CPT Coding, Medical Billing and Insurance [Internet]. 2016 [cited 2016 Sep 1]. Available from:
  • 98 Centers for Medicare & Medicaid Services. HCPCS – General Information [Internet]. 2016 [cited 2016 Aug 29]. Available from:
  • 99 Optum Inc. Clinformatics Data Mart [Internet]. 2014. Available from:
  • 100 Davé S, Petersen I. Creating medical and drug code lists to identify cases in primary care data-bases. Pharmacoepidemiol Drug Saf 2009; 18 (08) 704-707.
  • 101 Cheng C-L, Chien H-C, Lee C-H, Lin S-J, Yang Y-HK. Validity of in-hospital mortality data among patients with acute myocardial infarction or stroke in National Health Insurance Research Database in Taiwan. Int J Cardiol 2015; 201: 96-101.
  • 102 Wahl PM, Rodgers K, Schneeweiss S, Gage BF, Butler J, Wilmer C. et al. Validation of claimsbased diagnostic and procedure codes for cardiovascular and gastrointestinal serious adverse events in a commercially-insured population. Pharmacoepidemiol Drug Saf 2010; 19 (06) 596-603.
  • 103 Nickel KB, Wallace AE, Warren DK, Ball KE, Mines D, Fraser VJ. et al. Modification of claimsbased measures improves identification of comorbidities in non-elderly women undergoing mastectomy for breast cancer: a retrospective cohort study. BMC Health Serv Res 2016; 16: 1-12.
  • 104 Quint JK, Mullerova H, DiSantostefano RL, Forbes H, Eaton S, Hurst JR. et al. Validation of chronic obstructive pulmonary disease recording in the Clinical Practice Research Datalink (CPRD-GOLD). BMJ Open 2014; 04 (07) e005540-e005540.
  • 105 Williamson T, Green ME, Birtwhistle R, Khan S, Garies S, Wong ST. et al. Validating the 8 CPCSSN case definitions for chronic disease surveillance in a primary care database of electronic health records. Ann Fam Med 2014; 12 (04) 367-372.
  • 106 Tai D, Dick P, To T, Wright JG. Development of pediatric comorbidity prediction model. Arch Pediatr Adolesc Med 2006; 160 (03) 293-299.
  • 107 Afonso A, Schmiedl S, Becker C, Tcherny-Lessenot S, Primatesta P, Plana E. et al. A methodological comparison of two European primary care databases and replication in a US claims database: inhaled long-acting beta-2-agonists and the risk of acute myocardial infarction. Eur J Clin Pharmacol 2016; 72 (09) 1105-1116.
  • 108 Spivey CA, Qiao Y, Liu X, Mardekian J, Parker RB, Phatak H. et al. Discontinuation/Interruption of Warfarin Therapy in Patients with Nonvalvular Atrial Fibrillation. J Manag Care Spec Pharm 2015; 21 (07) 596-606.
  • 109 Bullano MF, Kamat S, Willey VJ, Barlas S, Watson DJ, Brenneman SK. Agreement between administrative claims and the medical record in identifying patients with a diagnosis of hypertension. Med Care 2006; 44 (05) 486-490.
  • 110 Wade L R, Cai Q. Impact of L-Methylfolate Combination Therapy Among Diabetic Peripheral Neuropathy Patients. Am J Pharm Benefits 2012; 04 (05) 219-224.
  • 111 Jafarzadeh SR, Warren DK, Nickel KB, Wallace AE, Fraser VJ, Olsen MA. Bayesian estimation of the accuracy of ICD-9-CM and CPT-4-based algorithms to identify cholecystectomy procedures in administrative data without a reference standard. Pharmacoepidemiol Drug Saf 2016; 25 (03) 263-268.
  • 112 Scales DC, Guan J, Martin CM, Redelmeier DA. Administrative data accurately identified intensive care unit admissions in Ontario. J Clin Epidemiol 2006; 59 (08) 802-807.
  • 113 Bui C, Kaye J, Castellsague J, Calingaert B, McQuay L, Riera-Guardia N. et al. Validation of Acute Liver Injury Cases in a Population-Based Cohort Study of Oral Antimicrobial Users. Curr Drug Saf 2014; 09 (01) 23-28.
  • 114 Smoyer-Tomic KE, Amato AA, Fernandes AW. Incidence and prevalence of idiopathic inflammatory myopathies among commercially insured, Medicare supplemental insured, and Medicaid enrolled populations: an administrative claims analysis. BMC Musculoskelet Disord 2012; 13 (01) 103.
  • 115 Jetté N, Reid AY, Quan H, Hill MD, Wiebe S. How accurate is ICD coding for epilepsy?. Epilepsia 2010; 51 (01) 62-69.
  • 116 Schmocker RK, Caretta-Weyer H, Weiss JM, Ronk K, Havlena J, Loconte NK. et al. Determining breast cancer axillary surgery within the surveillance epidemiology and end results-Medicare database. J Surg Oncol 2014; 109 (08) 756-759.
  • 117 Hagberg KW, Taylor A, Hernandez RK, Jick S. Incidence of bone metastases in breast cancer patients in the United Kingdom: Results of a multidatabase linkage study using the general practice research database. Cancer Epidemiol 2013; 37 (03) 240-246.
  • 118 Onukwugha E, Yong C, Hussain A, Seal B, Mullins CD. Concordance between administrative claims and registry data for identifying metastasis to the bone: an exploratory analysis in prostate cancer. BMC Med Res Methodol 2014; 14 (01) 1.
  • 119 Cea LSoriano, Soriano-Gabarró M, García LARodríguez. Validity and completeness of colorectal cancer diagnoses in a primary care database in the United Kingdom. Pharmacoepidemiol Drug Saf 2016; 25 (04) 385-391.
  • 120 Yen TWF, Laud PW, Sparapani RA, Li J, Nattinger AB. An algorithm to identify the development of lymphedema after breast cancer treatment. J Cancer Surviv 2015; 09 (02) 161-171.
  • 121 Fenton JJ, Green P, Baldwin LM. Internal validation of procedure codes on medicare claims for digital mammograms and computer-aided detection. Cancer Epidemiol Biomarkers Prev 2009; 18 (08) 2186-2189.
  • 122 Cogle CR, Craig BM, Rollison DE, List AF. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: High number of uncaptured cases by cancer registries. Blood 2011; 117 (26) 7121-7125.
  • 123 Nattinger AB, Laud PW, Bajorunaite R, Sparapani RA, Freeman JL. An Algorithm for the Use of Medicare Claims Data to Identify Women with Incident Breast Cancer. Health Serv Res 2004; 39 (6p1): 1733-1750.
  • 124 Cooper GS, Yuan Z, Stange KC, Amini SB, Dennis LK, Rimm AA. The Utility of Medicare Claims Data for Measuring Cancer Stage. Med Care 1999; 37 (07) 706-711.
  • 125 Fombonne E, Heavey L, Smeeth L, Rodrigues LC, Cook C, Smith PG. et al. Validation of the diagnosis of autism in general practitioner records. BMC Public Health 2004; 04 (01) 5.
  • 126 Dubreuil M, Peloquin C, Zhang Y, Choi HK, Inman RD, Neogi T. Validity of ankylosing spondylitis diagnoses in The Health Improvement Network. Pharmacoepidemiol Drug Saf 2016; 25 (04) 399-404.
  • 127 Baker R, Tata LJ, Kendrick D, Orton E. Identification of incident poisoning, fracture and burn events using linked primary care, secondary care and mortality data from England: implications for research and surveillance. Inj Prev 2016; 22 (01) 59-67.
  • 128 Smith GL, Shih Y-CT, Giordano SH, Smith BD, Buchholz TA. A method to predict breast cancer stage using Medicare claims. Epidemiol Perspect Innov 2010; 07: 1.
  • 129 Cea LSoriano, Wallander M-A, Andersson SW, Requena G, García-Rodríguez LA. Study of longacting reversible contraceptive use in a UK primary care database: Validation of methodology. Eur J Contracept Reprod Heal Care 2014; 19 (01) 22-28.
  • 130 Charlton RA, Weil JG, Cunnington VCMC de. Identifying major congenital malformations in the UK General Practice Research Database (GPRD): a study reporting on the sensitivity and added value of photocopied medical records and free text in the GPRD. Drug Saf 2010; 33 (09) 741-750.
  • 131 Capkun G, Lahoz R VE. Expanding the use of administrative claims databases in conducting clinical real-world evidence studies in multiple sclerosis. Curr Med Res Opin 2015; 31 (05) 1029-1039.
  • 132 Altoijry A, Al-Omran M, Lindsay TF, Johnston KW, Melo M MM. Validity of vascular trauma codes at major trauma centres. Can J Surg 2013; 56 (06) 405-408.
  • 133 Liede A, Hernandez RK, Roth M, Calkins G, Larrabee K NL. Validation of international classification of diseases coding for bone metastases in electronic health records using technology-enabled abstraction. Clin Epidemiol 2015; 07: 441-448.
  • 134 Jolley RJ, Quan H JN. Validation and optimisation of an ICD-10-coded case definition for sepsis using administrative health data. BMJ Open 2015; 05 (12) e009487.
  • 135 Hwang YJ. b, Shariff SZ. GS b. Validity of the International Classification of Diseases, Tenth Revision code for acute kidney injury in elderly patients at presentation to the emergency department and at hospital admission. BMJ Open. 2012 2(6).
  • 136 Hohl CM, Kuramoto L, Yu E, Rogula B, Stausberg J SB. Evaluating adverse drug event reporting in administrative data from emergency departments: a validation study. BMC Heal Serv Res 2013; 13 (01) 473.
  • 137 Eisenberg DF, Daniel GW JJ. Validation of a claims-based diagnostic code for Stevens-Johnson syndrome in a commercially insured population. Pharmacoepidemiol Drug Saf 2012; 21 (07) 760-764.
  • 138 Devine S, West SL, Andrews E. Validation of neural tube defects in the full featured general practice research database. Pharmacoepidemiol Drug Saf 2008; 17 (05) 434-444.
  • 139 Potter BK, Manuel D, Speechley KN, Gutmanis IA, Campbell MK KJ. Is there value in using physician billing claims along with other administrative health care data to document the burden of adolescent injury? An exploratory investigation with comparison to self-reports in Ontario, Canada. BMC Heal Serv Res 2005; 05 (01) 15.
  • 140 Zuckerman IH, Sato M, Hsu VD, Hernandez JJ. Validation of a method for identifying nursing home admissions using administrative claims. BMC Health Serv Res 2007; 07: 202.
  • 141 Thomas KH, Davies N, Metcalfe C, Windmeijer F, Martin RM, Gunnell D. Validation of suicide and self-harm records in the clinical practice research datalink. Br J Clin Pharmacol 2013; 76 (01) 145-157.
  • 142 Takeshita J, Gelfand JM, Li P, Pinto L, Yu X, Rao P. et al. Psoriasis in the US Medicare Population: Prevalence, Treatment, and Factors Associated with Biologic Use. J Invest Dermatol 2015; 135 (12) 2955-2963.
  • 143 Quinlan SC, Cheng WY, Ishihara L, Irizarry MC, Holick CN, Duh MS. Development and validation of an algorithm for identifying urinary retention in a cohort of patients with epilepsy in a large US administrative claims database. Pharmacoepidemiol Drug Saf 2016; 25 (04) 413-421.
  • 144 Rothnie KJ, Müllerová H, Hurst JR, Smeeth L, Davis K, Thomas SL. et al. Validation of the recording of acute exacerbations of COPD in UK primary care electronic healthcare records. PLoS One 2016; 11 (03) e0151357.
  • 145 Seminara NM, Abuabara K, Shin DB, Langan SM, Kimmel SE, Margolis D. et al. Validity of the Health Improvement Network (THIN) for the study of psoriasis. Br J Dermatol 2011; 164 (03) 602-609.
  • 146 Lo Re 3rd V, Haynes K, Forde KA, Localio AR, Schinnar R, Lewis JD. Validity of The Health Improvement Network (THIN) for epidemiologic studies of hepatitis C virus infection. Pharmacoepidemiol Drug Saf 2009; 18 (09) 807-814.
  • 147 Margolis DJ, Bilker W, Knauss J, Baumgarten M, Strom BL. The incidence and prevalence of pressure ulcers among elderly patients in general medical practice. Ann Epidemiol 2002; 12 (05) 321-325.
  • 148 Marston L, Carpenter JR, Walters KR, Morris RW, Nazareth I, White IR. et al. Smoker, ex-smoker or non-smoker? The validity of routinely recorded smoking status in UK primary care: a cross-sectional study. BMJ Open 2014; 04 (04) e004958.
  • 149 Martin B-J, Chen G, Graham M, Quan H. Coding of obesity in administrative hospital discharge abstract data: accuracy and impact for future research studies. BMC Health Serv Res 2014; 14 (01) 70.
  • 150 Meropol SB, Metlay JP. Accuracy of pneumonia hospital admissions in a primary care electronic medical record database. Pharmacoepidemiol Drug Saf 2012; 21 (06) 659-665.
  • 151 Nazareth I, King M, Haines A, Rangel L, Myers S. Accuracy of diagnosis of psychosis on general practice computer system. BMJ 1993; 307 6895 32-34.
  • 152 Higgins JP, Altman DG, Sterne JA. Assessing risk of bias in included studies. In: Cochrane Handbook for Systematic Reviews of Interventions [Internet]. Version 5 2011 Available from: http://handbook-5–
  • 153 Kang EM, Pinheiro SP, Hammad TA A-AA. Evaluating the validity of clinical codes to identify cataract and glaucoma in the UK Clinical Practice Research Datalink. Pharmacoepidemiol Drug Saf 2015; 24 (01) 38-44.
  • 154 Kern DM, Davis J WS. Population, Validation of an administrative claims-based diagnostic code for pneumonia in a US-based commercially insured COPD. Int J Chron Obs Pulmon Dis 2015; 10 (01) 1417-1425.
  • 155 Kim S, Solomon D, Liu J, Chang C-L, Daniel G SS. Accuracy of identifying neutropenia diagnoses in outpatient claims data. Pharmacoepidemiol Drug Saf 2011; 20 (07) 709-713.
  • 156 Noonan VK, Thorogood NP, Fingas M, Batke J, Bélanger L, Kwon BK. et al. The Validity of Administrative Data To Classify Patients with Spinal Column and Cord Injuries. J Neurotrauma 2013; 30 (03) 173-180.
  • 157 Ogdie A, Alehashemi S, Love TJ, Jiang Y, Haynes K, Hennessy S. et al. Validity of psoriatic arthritis and capture of disease modifying antirheumatic drugs in the health improvement network. Pharmacoepidemiol Drug Saf 2014; 23 (09) 918-922.
  • 158 Lewis J, Brensinger C. Agreement between GPRD smoking data: a survey of general practitioners and a population-based surveyLewis. Pharmacoepidemiol Drug Saf 2004; 13 (07) 437-441.
  • 159 Lewis JD, Brensinger C, Bilker WB SB. Validity and completeness of the General Practice Research Database for studies of inflammatory bowel disease. Pharmacoepidemiol Drug Saf 2002; 11 (03) 211-218.
  • 160 Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc 2005; 104 (03) 157-163.
  • 161 Gaist D, Wallander M-A, González-Pérez A, García-Rodríguez LA. Incidence of hemorrhagic stroke in the general population: validation of data from The Health Improvement Network. Pharmacoepidemiol Drug Saf 2013; 22 (02) 176-182.
  • 162 Hammad TA, Margulis A V, Ding Y, Strazzeri MM, Epperly H. Determining the predictive value of Read codes to identify congenital cardiac malformations in the UK Clinical Practice Research Datalink. Pharmacoepidemiol Drug Saf 2013; 22 (11) 1233-1238.
  • 163 Hennessy S, Leonard CE, Palumbo CM, Bilker WB, Newcomb C, Kimmel SE. Diagnostic codes for sudden cardiac death and ventricular arrhythmia functioned poorly to identify outpatient events in EPIC’s General Practice Research Database. Pharmacoepidemiol Drug Saf 2008; 17 (12) 1131-1136.
  • 164 Peng M, Chen G, Lix LM, McAlister FA, Tu K, Campbell NR. et al. Refining hypertension surveillance to account for potentially misclassified cases. PLoS One 2015; 10 (03) e0119186.
  • 165 Ruigómez A, Martín-Merino E, García LARodríguez. Validation of ischemic cerebrovascular diagnoses in the health improvement network (THIN). Pharmacoepidemiol Drug Saf 2010; 19 (06) 579-585.
  • 166 Wurst KE, Ephross SA, Loehr J, Clark DW, Guess HA. The utility of the general practice research database to examine selected congenital heart defects: a validation study. Pharmacoepidemiol Drug Saf 2007; 16 (08) 867-877.
  • 167 Charlton R, Snowball J, Bloomfield K, de Vries C. Colorectal cancer incidence on the General Practice Research Database. Pharmacoepidemiol Drug Saf 2012; 21 (07) 775-783.
  • 168 Chen-Hardee S, Chrischilles EA, Voelker MD, Brooks JM, Scott S, Link BK. et al. Populationbased assessment of hospitalizations for neutropenia from chemotherapy in older adults with non-Hodgkin’s lymphoma (United States). Cancer Causes Control 2006; 17 (05) 647-654.
  • 169 Freeman JL, Zhang D, Freeman DH, Goodwin JS. An approach to identifying incident breast cancer cases using Medicare claims data. J Clin Epidemiol 2000; 53 (06) 605-614.
  • 170 Liede A, Hernandez RK, Roth M, Calkins G, Larrabee K, Nicacio L. Validation of International Classification of Diseases coding for bone metastases in electronic health records using technology-enabled abstraction. Clin Epidemiol 2015; 07: 441-448.
  • 171 Martín-Merino E, Wallander M-A, Andersson S, Soriano-Gabarró M, Rodríguez LAG, Okolo S. et al. The reporting and diagnosis of uterine fibroids in the UK: An observational study. BMC Womens Health 2016; 16 (01) 45.
  • 172 Meal A, Hons B, Bs BM, Fhea M, Smith C, Pgce Ba. Validation of THIN data for non-melanoma skin cancer. Int J Cancer 2008; 16 (01) 49-52.
  • 173 Walker AM. Identification of esophageal cancer in the General Practice Research Database. Pharmacoepidemiol Drug Saf 2011; 20 (11) 1159-1167.
  • 174 Quach S, Blais C, Quan H. Administrative data have high variation in validity for recording heart failure. Can J Cardiol 2010; 26 (08) 306-312.
  • 175 Baratloo A, Hosseini M, Negida A, El Ashal G. Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity. Emerg (Tehran, Iran) 2015; 03 (02) 48-49.
  • 176 Jick H, Terris BZ, Derby LE, Jick SS. Further validation of information recorded on a general practitioner based computerized data resource in the united kingdom. Pharmacoepidemiol Drug Saf 1992; 01 (06) 347-349.
  • 177 Kim SY, Servi A, Polinski JM, Mogun H, Weinblatt ME, Katz JN. et al. Validation of rheumatoid arthritis diagnoses in health care utilization data. Arthritis Res Ther 2011; 13 (01) R32.
  • 178 Losina E, Barrett J, Baron JA, Katz JN. Accuracy of Medicare claims data for rheumatologic diagnoses in total hip replacement recipients. J Clin Epidemiol 2003; 56 (06) 515-519.
  • 179 Martin-Merino E, Fortuny J, Rivero E, Garcia-Rodriguez LA. Validation of Diabetic Retinopathy and Maculopathy Diagnoses Recorded in a UK Primary Care Database. Diabetes Care 2012; 35 (04) 762-767.
  • 180 Johansson K, Cnattingius S, Näslund I, Roos N, Trolle YLagerros, Granath F. et al. Outcomes of Pregnancy after Bariatric Surgery. N Engl J Med 2015; 372 (09) 814-824.
  • 181 Langner I, Mikolajczyk R, Garbe E. Regional and temporal variations in coding of hospital diagnoses referring to upper gastrointestinal and oesophageal bleeding in Germany. BMC Health Serv Res 2011; 11 (01) 193.
  • 182 Dimitropoulos V, Bennett A, McIntosh J. Coding productivity in Sydney public hospitals. HIM J 2002; 30 (03) 12-22.
  • 183 Thornton C, Makris A, Ogle R, Hennessy A. Generic obstetric database systems are unreliable for reporting the hypertensive disorders of pregnancy. Aust New Zeal J Obstet Gynaecol 2004; 44 (06) 505-509.
  • 184 Vlasschaert MEO, Bejaimal SAD, Hackam DG, Quinn R, Cuerden MS, Oliver MJ. et al. Validity of administrative database coding for kidney disease: A systematic review. Am J Kidney Dis 2011; 57 (01) 29-43.
  • 185 Premier Research Services. Premier Healthcare Database [Internet]. 2016 Available from:
  • 186 Kornegay C, Segal JB. Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide. Rockville: Agency for Healthcare Research and Quality; 2013. Chapter 8.
  • 187 NHS Digital. Terminiology and Classifications [Internet]. 2016 Available from:
  • 188 Liberman JN, Berger JE, Lewis M. Prevalence of antihypertensive, antidiabetic, and dyslipidemic prescription medication use among children and adolescents. Arch Pediatr Adolesc Med 2009; 163 (04) 357-364.
  • 189 PRISMA. PRISMA Checklist [Internet]. 2015 [cited 2017 Oct 6]. Available from:
  • 190 ABC Coding Solutions. Alternative Billing Coding (ABC) [Internet]. 2016 Available from:
  • 191 Chmiel C, Bhend H, Senn O, Zoller M, Rosemann T. FIRE study-group. The FIRE project: a milestone for research in primary care in Switzerland. Swiss Med Wkly 2011; 140: w13142-w13142.
  • 192 Australian Digital Health Agency. Australian Medicines Terminology [Internet]. 2016 [cited 2016 Sep 6]. Available from:
  • 193 Centers for Medicare & Medicaid Services. Berenson-Eggers Type of Service Codes (BETOS) [Internet]. 2016 Available from:
  • 194 Bach PB, Pham HH, Schrag D, Tate RC, Hargraves JL. Primary Care Physicians Who Treat Blacks and Whites. N Engl J Med 2004; 351 (06) 575-584.
  • 195 Canadian Institute for Health Information. Canadian Classification of Health Interventions [Internet]. 2016 Available from:
  • 196 Harbers M, van der Wilk E, Kramers P, Kuunders M, Verschuuren M, Eliyahu H. et al. Dare to Compare! Benchmarking Dutch health with the European Community Health Indicators (ECHI). Vol. 96, Addiction. National Institute for Public Health and the Environment; 2008: 1-304.
  • 197 Hanser S, Zaiss A, Schulz S. Comparison of ICHI and CCAM basic coding system. Stud Health Technol Inform 2006; 124 (October): 795-800.
  • 198 De Bleser L, Vlayen J, Vanhaecht K, Sermeus W. Classifying clinical pathways. Stud Health Technol Inform 2004; 110: 9-14.
  • 199 Chapman C, Kern A, Laguecir A. Costing practices in healthcare. Accounting Horizons 2014; 28 (02) 353-364.
  • 200 Australian Institute of Health and Welfare. Australian refined diagnosis-related groups (ARDRG) data cubes [Internet]. 2016 [cited 2016 Sep 6]. Available from:
  • 201 Giannopoulos GA, Merriman LR, Rumsey A, Zwiebel DS. Malnutrition Coding 101. Nutr Clin Pract 2013; 28 (06) 698-709.
  • 202 Averill RF, Goldfield N, Hughes JS, Bonazelli J, McCullough EC, Steinbeck BA. et al. All Patient Refined Diagnosis Related Groups (APR-DRGs): Methodology Overview. 3M Heal Inf Syst 2003; 1-81.
  • 203 Shafrin J. What is the difference between DRGs, AP-DRGs, and APR-DRGs? [Internet]. Vol. 1984. 2012 Available from:
  • 204 Latta V, Helbing C. Medicare Short-Stay Hospital Services by Diagnosis-Related Groups. Heal Care Financ Rev 1991; 12 (04) 105-140.
  • 205 Bielby JA. Evolution of DRGs (2010 update). J AHIMA. 2010 (2006).
  • 206 Anderson G, Ikegami N. How Can Japan’s DPC Inpatient Hospital Payment System Be Strengthened? [Internet]. 2011 Available from:
  • 207 Henschke C, Baeumler M, Gaskins M, Busse R. Coronary stents and the uptake of new medical devices in the German system of inpatient reimbursement. J Interv Cardiol 2010; 23 (06) 546-553.
  • 208 Baron S, Duclos C, Thoreux P. Orthopedics coding and funding. Orthop Traumatol Surg Res 2014; 100 (1 Suppl): S99-106.
  • 209 Haliasos N, Rezajooi K, O’neill KS, Van Dellen J, Hudovsky A, Nouraei S. Financial and clinical governance implications of clinical coding accuracy in neurosurgery: a multidisciplinary audit. Br J Neurosurg 2010; 24 (02) 191-195.
  • 210 Centers for Medicare & Medicaid Services. Draft ICD-10-CM/PCS MS-DRGv31.0 Definitions Manual [Internet]. 2016 Available from:
  • 211 Hinkle-Azzara B, Carr K. Answering the Tough ICD10 Questions: Coding Experts Offer Tips on How to Make it to October 1, 2015 and Beyond. J Am Heal Inf Manag Assoc 2015; 86 (06) 28-33.
  • 212 Letrilliart L, Gelas-Dore BB, Ortolan B, Colin C. Prometheus: the implementation of clinical coding schemes in French routine general practice. Inform Prim Care 2006; 14 (03) 157-165.
  • 213 NHS Digital. Dictionary of Medicines and Devices [Internet]. 2016 [cited 2016 Sep 6]. Available from:
  • 214 Wikipedia. Procedure Code [Internet]. 2016 [cited 2016 Sep 20]. Available from:
  • 215 Global Medical Device Nomenclature Agency. GMDN Agency [Internet]. 2016 Available from:
  • 216 Watters JL, Park Y, Hollenbeck A, Schatzkin A, Albanes D. Cigarette smoking and prostate cancer in a prospective US cohort study. Cancer Epidemiol Biomarkers Prev 2009; 18 (09) 2427-2435.
  • 217 Becks L. ICD-10-CM readiness coding for diabetes. Med Econ 2014; 91 (11) 46-48.
  • 218 Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sørensen HT. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med Res Methodol 2011; 11 (01) 83.
  • 219 Christensen BJ, Kallestrup-Lamb M. The impact of health changes on labor supply: Evidence from merged data on individual objective medical diagnosis codes and early retirement behavior. Health Econ 2012; 21 Suppl 1: 56-100.
  • 220 Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F. et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66 (02) 115-132.
  • 221 Becks L. ICD-10-CM readiness. A coding guide for heart disease. Med Econ 2014; 91 (09) 32-34.
  • 222 DeVault K. The respiratory system and ICD-10-CM/PCS. J AHIMA 2012; 83 (01) 54-55.
  • 223 Dexheimer JW, Scheid B, Babaoff A, Martens S, Kennebeck S. Preparing for International Classification of Diseases, 10th Revision, Clinical Modification implementation: strategies for maintaining an efficient workflow. Pediatr Emerg Care 2015; 31 (01) 65-69.
  • 224 Broderick JS, Henley MB. An introduction to orthopaedic coding and billing. J Orthop Trauma 2014; 28 Suppl 9(9 SUPPL.): S12-14.
  • 225 Singer L, Braunstein S, Fogh SE. Looking ahead: Practicing radiation oncology in the era of ICD-10. Int J Radiat Oncol Biol Phys 2015; 93 (05) 949-952.
  • 226 Hux JE, Ivis F, Flintoft V, Bica A. Diabetes in Ontario: Determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care 2002; 25 (03) 512-516.
  • 227 Chen C-Y, Lee K-T, Lee CT-C, Lai W-T, Huang Y-B. Effectiveness and safety of antiplatelet therapy in stroke recurrence prevention in patients with liver cirrhosis: a 2-year follow-up study. Pharmacoepidemiol Drug Saf 2012; 21 (12) 1334-1343.
  • 228 Kostick K. From V codes to Z codes: transitioning to ICD-10 (updated). J AHIMA 2011; 82 (11) 60-63.
  • 229 Blanchard JF, Ludwig S, Wajda A, Dean H, Anderson K, Kendall O. et al. Incidence and prevalence of diabetes in Manitoba, 1986–1991. Diabetes Care 1996; 19 (08) 807-811.
  • 230 Franceschi S, Lise M, Trépo C, Berthillon P, Chuang S-C, Nieters A. et al. Infection with hepatitis B and C viruses and risk of lymphoid malignancies in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Epidemiol Biomarkers Prev 2011; 20 (01) 208-214.
  • 231 National Cancer Institute SEER Training Modules. ICD Conversion Programs [Internet]. 2016 Available from:
  • 232 National Cancer Institute SEER Training Modules. Coding Primary Site & Tumor Morphology [Internet]. Cancer Registration & Surveillance Modules. 2016 Available from:
  • 233 International Council of Nurses. International Classification for Nursing Practice [Internet]. 2017 Available from:
  • 234 World Health Organization (WHO). International Classification of Functioning, Disability and Health (ICF) [Internet]. 2016 Available from:
  • 235 Heerkens YF, Bougie T, Vrankrijker MW, de K. Classification and terminology of assistive products. Int Encycl Rehabil 2010; 1-10.
  • 236 Fox MH, Krahn GL, Sinclair LB, Cahill A. Using the international classification of functioning, disability and health to expand understanding of paralysis in the United States through improved surveillance. Disabil Health J 2015; 08 (03) 457-463.
  • 237 Joling KJ, Van Marwijk HWJ, Piek E, Der Horst HEV, Penninx BW, Verhaak P. et al. Do GPs’ medical records demonstrate a good recognition of depression? A new perspective on case extraction. J Affect Disord 2011; 133 (03) 522-527.
  • 238 De Jong J, Visser MRM, Wieringa-de Waard M. Which barriers affect morbidity registration performance of GP trainees and trainers?. Int J Med Inform 2013; 82 (08) 708-716.
  • 239 Frese T, Herrmann K, Bungert-Kahl P, Sandholzer H. Inter-rater reliability of the ICPC-2 in a German general practice setting. Swiss Med Wkly 2012; 142: w13621.
  • 240 Nicholson K, Stewart M, Thind A. Examining the symptom of fatigue in primary care: a comparative study using electronic medical records. J Innov Heal informatics 2015; 22 (01) 235-243.
  • 241 Uppsala Monitoring Centre. Cross Reference Tool Japan [Internet]. 2016 [cited 2016 Aug 30]. Available from:
  • 242 Kim M. Comparative Analysis of SNOMED CT and Korea Standard Terminology of Medicine. Adv Sci Technol Lett 2016; 136: 5-8.
  • 243 International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). MedDRA Coding Basics [Internet]. 2016 Available from:–1600_coding_basics.pdf
  • 244 International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Introductory Guide MedDRA Version 19.1 [Internet]. 2016 Available from:
  • 245 Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med 2011; 365 (21) 2002-2012.
  • 246 Cea LSoriano, Wallander M-A, Andersson S, Filonenko A, García LARodríguez. The continuation rates of long-acting reversible contraceptives in UK general practice using data from The Health Improvement Network. Pharmacoepidemiol Drug Saf 2015; 24 (01) 52-58.
  • 247 NHS Digital. OPCS-4 Classification [Internet]. 2017 [cited 2017 Sep 27]. Available from:
  • 248 Radiological Society of North America (RSNA). RadLex Playbook 2.2: User Guide [Internet]. 2016 Available from:
  • 249 De Lusignan S, Liaw ST, Michalakidis G, Jones S. Defining datasets and creating data dictionaries for quality improvement and research in chronic disease using routinely collected data: An ontology-driven approach. Inform Prim Care 2012; 19 (03) 127-134.
  • 250 Welk B, Loh E, Shariff SZ, Liu K, Siddiqi F. An administrative data algorithm to identify traumatic spinal cord injured patients: a validation study. Spinal Cord 2014; 52 (01) 34-38.
  • 251 Agency for Healthcare Research and Quality. Clinical drug component RXCUI [Internet]. 2016 Available from:
  • 252 U.S. National Library of Medicine. Standard Product Nomenclature Source Information [Internet]. 2010 [cited 2016 Jan 1]. Available from:
  • 253 Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P. Incidence of Adenocarcinoma among Patients with Barrett’s Esophagus. N Engl J Med 2011; 365 (15) 1375-1383.
  • 254 McDonald CJ. Quality Measures and Electronic Medical Systems. JAMA J Am Med Assoc 1999; 282 (12) 1181-1182.
  • 255 Ceusters W, Smith B. Strategies for referent tracking in electronic health records. J Biomed Inform 2006; 39 (03) 362-378.
  • 256 De Lusignan S, Sadek K, McDonald H, Horsfield P, Sadek NH, Tahir A. et al. Call for consistent coding in diabetes mellitus using the royal college of general practitioners and NHS pragmatic classification of diabetes. Inform Prim Care 2012; 20 (02) 103-113.
  • 257 Chmiel C, Reich R, Signorell A, Tandjung R, Rosemann T, Senn S. Appropriateness of Diagnostic Coronary Angiography as a Measure of Cardiac Ischemia Testing in Non-Emergency Patients – A Retrospective Cross-Sectional Analysis. PLoS One 2015; 10 (02) e0117172.
  • 258 Salmasian H, Freedberg DE, Abrams JA, Friedman C. An automated tool for detecting medication overuse based on the electronic health records. Pharmacoepidemiol Drug Saf 2013; 22 (02) 183-189.
  • 259 Varghese J, Schulze SSünninghausen, Dugas M. Standardized Cardiovascular Quality Assurance Forms with Multilingual Support, UMLS Coding and Medical Concept Analyses. Stud Health Technol Inform 2015; 216: 837-841.
  • 260 Uppsala Monitoring Centre. The WHO Adverse Reaction Terminology – WHO-ART. Terminology for coding clinical information in relation to drug therapy [Internet]. 2015 Available from:
  • 261 Uppsala Monitoring Centre. The WHO Drug Dictionary EnhancedTM [Internet]. 2016 [cited 2016 Aug 30]. Available from:
  • 262 Lemeshow S, Sørensen HT, Phillips G, Yang E V, Antonsen S, Riis AH. et al. β-blockers and survival among danish patients with malignant melanoma: A population-based cohort study. Cancer Epidemiol Biomarkers Prev. 2011; 20 (10) 2273-2279.
  • 263 Pasternak B, Svanström H, Melbye M, Hviid A. Association Between Oral Fluoroquinolone Use and Retinal Detachment. JAMA 2013; 310 (20) 2184.
  • 264 Baker LC, Bundorf MK, Royalty AB, Levin Z. Physician Practice Competition and Prices Paid by Private Insurers for Office Visits. JAMA 2014; 312 (16) 1653.
  • 265 Curtis K, Lam M, Mitchell R, Dickson C, McDonnell K. Major trauma: The unseen financial burden to trauma centres, a descriptive multicentre analysis. Aust Heal Rev 2014; 38 (01) 30-37.
  • 266 Or. Z. Implementation of DRG Payment in France: Issues and recent developments. Policy (New York) 2014; 117 (02) 146-150.
  • 267 Beckley ICA, Nouraei R, Carter SSC. Payment by results: Financial implications of clinical coding errors in urology. BJU Int 2009; 104 (08) 1043-1046.
  • 268 NHS Confederation. The guide to hospital nonexecutive directors’ guide to hospital data [Internet]. Vol. June, Hospitals Forum briefing. 2013 Available from: sources/2013/02/the-non-executive-directorsguide-to-hospital-data-part-one-activity-pathways-and-datasets
  • 269 Townley WA, Urbanska C, Dunn RLR, Khan U. Costs and coding – Free-flap reconstruction in lower-limb trauma. Injury 2011; 42 (04) 381-384.
  • 270 Bryant G. Ensuring compliant malnutrition coding. J AHIMA 2011; 82 (10) 78-80.
  • 271 Carroll N V. A comparison of costs of Medicare Part D prescriptions dispensed at retail and mail order pharmacies. J Manag care Spec Pharm 2014; 20 (09) 959-967.
  • 272 Visaria J, Frazee SG DS. Asthma Controller Adherence in Mail Order Pharmacy Compared to Retail Pharmacy. Am J Pharm Benefits 2012; e73-380.
  • 273 AHIMA. Using CDI programs to improve acute care clinical documentation in preparation for ICD-10-CM/PCS (2014 update). J Am Heal Inf Manag Assoc 2014; 84 (06) 56-61.
  • 274 Conn J. Expensive. Confusing. Time consuming. Looming shift to more complex ICD-10 coding system has hospitals and physicians scrambling. Mod Healthc 2013; 43 (43) 22-24.
  • 275 Flowers CR, Fedewa SA, Chen AY, Nastoupil LJ, Lipscomb J, Brawley OW. et al. Disparities in the early adoption of chemoimmunotherapy for diffuse large B-cell lymphoma in the United States. Cancer Epidemiol Biomarkers Prev 2012; 21 (09) 1520-1530.
  • 276 Conidi F. Coding for Sports Neurology. Continuum (N Y) 2014; 20 (December): 1692-1703.
  • 277 Food and Drug Administration (FDA). National Drug Code Directory [Internet]. Center for Drug Evaluation and Research. 2016 [cited 2016 Sep 1]. Available from:
  • 278 NHS Digital. OPCS Classification of Interventions and Procedures [Internet]. 2017 [cited 2016 Sep 1]. Available from:
  • 279 Charlton RA, Neville AJ, Jordan S, Pierini A, Damase-Michel C, Klungsøyr K. et al. Healthcare databases in Europe for studying medicine use and safety during pregnancy. Pharmacoepidemiol Drug Saf 2014; 23 (06) 586-594.
  • 280 Scottish Clinical Information Management in Practice (SCIMP). SCIMP Guide to Read Codes [Internet]. 2016 Available from:
  • 281 Elkin PL, Brown SH, Husser CS, Bauer BA, Wahner-Roedler D, Rosenbloom ST. et al. Evaluation of the Content Coverage of SNOMED CT: Ability of SNOMED Clinical Terms to Represent Clinical Problem Lists. Mayo Clin Proc 2006; 81 (06) 741-748.
  • 282 Mitchell RJ, Bambach MR, Muscatello D, McKenzie K, Balogh ZJ. Can SNOMED CT as implemented in New South Wales, Australia be used for road trauma injury surveillance in emergency departments?. Heal Inf Manag J 2013; 42 (02) 4-8.
  • 283 Matter-Walstra KW, Achermann R, Rapold R, Klingbiel D, Bordoni A, Dehler S. et al. Delivery of health care at the end of life in cancer patients of four swiss cantons: a retrospective database study (SAKK 89/09). BMC Cancer 2014; 14 (01) 306.
  • 284 Jencks SF, Williams M V, Coleman EA. Rehospitalizations among Patients in the Medicare Feefor-Service Program. N Engl J Med 2009; 360 (14) 1418-1428.
  • 285 Pang JX, Ross E, Borman MA, Zimmer S, Kaplan GG, Heitman SJ. et al. Validation of coding algorithms for the identification of patients hospitalized for alcoholic hepatitis using administrative data. BMC Gastroenterol 2015; 15 (01) 116.
  • 286 Mabasa VH, Ma J. Effect of a therapeutic maximum allowable cost (MAC) program on the cost and utilization of proton pump inhibitors in an employer-sponsored drug plan in Canada. J Manag Care Pharm 2006; 12 (05) 371-376.
  • 287 Quan H, Moskal L, Forster AJ, Brien S, Walker R, Romano PS. et al. International variation in the definition of “main condition” in ICD-coded health data. Int J Qual Heal Care 2014; 26 (05) 511-515.
  • 288 Lu T-H, Lunetta P, Walker S. Quality of cause-ofdeath reporting using ICD-10 drowning codes: a descriptive study of 69 countries. BMC Med Res Methodol 2010; 10 (December 2016): 30.
  • 289 Center MM, Jemal A. International Trends in Liver Cancer Incidence Rates. Cancer Epidemiol Biomarkers Prev 2011; 20 (11) 2362-2368.
  • 290 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer Statistics, 2009. CA Cancer J Clin 2009; 59 (04) 225-249.
  • 291 Gackowski D, Speina E, Zielinska M, Kowalewski J, Rozalski R, Siomek A. et al. Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res 2003; 63 (16) 4899-4902.
  • 292 Taylor JA, Gerwin D, Morlock L, Miller MR. Triangulating case-finding tools for patient safety surveillance: a cross-sectional case study of puncture/laceration. Inj Prev 2011; 17 (06) 388-393.
  • 293 Purdue MP, Bassani DG, Klar NS, Sloan M, Kreiger N. Dietary factors and risk of non-Hodgkin lymphoma by histologic subtype: a case-control analysis. Cancer Epidemiol biomarkers Prev 2004; 13 (10) 1665-1676.
  • 294 Broberg CS, Mitchell J, Rehel S, Grant A, Gianola A, Beninato P. et al. Electronic medical record integration with a database for adult congenital heart disease: Early experience and progress in automating multicenter data collection. Int J Cardiol 2015; 196: 178-182.
  • 295 First Databank. Multilex – Drug Terminology [Internet]. 2016 Available from:
  • 296 Cannon B, Strubler D. ICD-10: Are you ready for a brave new world?. Nephrol News Issues 2014; 28 (10) 26-27. 29.