Methods Inf Med 2010; 49(03): 290-293
DOI: 10.3414/ME09-02-0025
Special Topic – Original Articles
Schattauer GmbH

An Epidemiological Modeling and Data Integration Framework

B. Pfeifer*
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
M. Wurz*
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
F. Hanser
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
M. Seger
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
M. Netzer
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
M. Osl
1   UMIT, Institute of Electrical, Electronic and Bioengineering, Hall, Austria
,
R. Modre-Osprian
2   AIT Austrian Institute of Technology GmbH, Safety and Security Department, Graz, Austria
,
G. Schreier
2   AIT Austrian Institute of Technology GmbH, Safety and Security Department, Graz, Austria
,
C. Baumgartner
2   AIT Austrian Institute of Technology GmbH, Safety and Security Department, Graz, Austria
› Author Affiliations
Further Information

Publication History

received: 11 September 2009

accepted: 08 March 2010

Publication Date:
17 January 2018 (online)

Summary

Objectives: In this work, a cellular automaton software package for simulating different infectious diseases, storing the simulation results in a data warehouse system and analyzing the obtained results to generate prediction models as well as contingency plans, is proposed. The Brisbane H3N2 flu virus, which has been spreading during the winter season 2009, was used for simulation in the federal state of Tyrol, Austria.

Methods: The simulation-modeling framework consists of an underlying cellular automaton. The cellular automaton model is parameterized by known disease parameters and geographical as well as demographical conditions are included for simulating the spreading. The data generated by simulation are stored in the back room of the data warehouse using the Talend Open Studio software package, and subsequent statistical and data mining tasks are performed using the tool, termed Knowledge Discovery in Database Designer (KD3).

Results: The obtained simulation results were used for generating prediction models for all nine federal states of Austria.

Conclusion: The proposed framework provides a powerful and easy to handle interface for parameterizing and simulating different infectious diseases in order to generate prediction models and improve contingency plans for future events.

* These authors contributed equally.


 
  • References

  • 1 World Health Organization (WHO) (Internet).. (updated Feb 15, 2010, cited Aug 10, 2009). Available from: http://www.who.int.
  • 2 Austria to face flu epidemic in new year (2009) (Internet). (updated Feb 15, 2010, cited Aug 10, 2009). Available from: http://www.wienerzeitung.at/DesktopDefault.aspx?TabID=4975&Alias=wzo&cob=388656/.
  • 3 Lichtenberger K. Stochastic cellular automaton models in disease spreading and ecology. Oct 2005 Doctoral Thesis TU Graz, Austria.:
  • 4 Hethecote HW. The mathematics of infectious diseases. Society for Industrial and Applied Mathematics 2000; 42: 599-653.
  • 5 Triampo W, Baowan D, Tang IM, Nuttavut N, Wong-Ekkabut J, Doungchawee G. A Simple Deterministic Model for the Spread of Leptospirosis in Thailand. International Journal of Biological and Life Sciences 2006; 2: 22-26.
  • 6 Tiensin T, Nielen M, Vernooij H, Songserm T, Kalpravidh W, Chotiprasatintara S, Chaisingh A, Wongkasemjit S, Chanachai K, Thanapongtham W, Srisuvan T, Stegeman A. Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand. J Infect Dis 2007; 196 (11) 1679-1684. Epub Oct 25, 2007.
  • 7 Codeço Coelho F, Codeco C, Cruz O. Epigrass: a tool to study disease spread in complex networks. Source Code for Biology and Medicine 2008; 3: 3. doi: 10.1186/1751-0473-3-3.
  • 8 Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med 2008; 5 (03) e74.
  • 9 Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N. Modelling disease outbreaks in realistic urban social networks. Nature 2004; 429 6988 180-184.
  • 10 Kimball R, Caserta J. The Data Warehouse ETL Toolkit. Wiley Publishing Inc.; 2004
  • 11 Talend Open Studio (Internet).. (Updated Dez 1, 2009, cited Aug 10, 2009). Available from: http://www.talend.com.
  • 12 Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: An overview. Advances in Knowledge Discovery and Data Mining 1996 pp. 1-34.
  • 13 Pfeifer B, Tejada MM, Kugler K, Osl M, Netzer M, Seger M, Modre-Osprian R, Schreier G, Tilg B. A Biomedical Knowledge Discovery in Databases Design Tool – Turning Data into Information. eHealth. 2008 Wien: May 29-30, 2008. CD-ROM.
  • 14 Diagnostisches Influenza Netzwerk Österreich. (Internet) (updated Feb 15, 2010, cited Aug 10, 2009). Available from: http://www.influenza.at/influenza-main.htm.
  • 15 Leven K-H. Geschichte der Medizin: Von der Antike bis zur Gegenwart. Beck, 2008: ISBN: 978-3-406-56252-5.
  • 16 Murray JD. Mathematical Biology. Springer. ISBN 354057204X.
  • 17 Jones DS, Sleemann BD. Differential Equations and Mathematical Biology. London: George Allen & Unwin; 1983. ISBN-10: 1584882964.
  • 18 Ilachinski A. Cellular Automata – a Discrete Universe. World Scientific; 2001. ISBN: 981-02-4623-4.
  • 19 Chopard B, Droz M. Cellular Automata Modeling of Physical Systems. Cambridge University Press; ISBN: 0-521-67345-2.
  • 20 Gaylord RJ, D’Andria LJ. Simulating Society. Springer; 1998. ISBN: 0-387-98532-8.
  • 21 Google-Maps (Internet). (updated Feb 15, 2010, cited Feb 15, 2010). Available from: http://maps.google.com.
  • 22 Pfeifer B, Kugler K, Tejada MM, Baumgartner C, Seger M, Osl M, Netzer M, Handler M, Dander A, Wurz M, Graber A, Tilg B. A cellular automaton framework for infectious disease spread simulation. Open Med Inform J 2008; 2: 70-81.
  • 23 Plaisier AP, Subramanian S, Das PK, Souza W, Lapa T, Furtado AF, Van der Ploeg CP, Habbema JD, van Oortmarssen GJ. The LYMFASIM simulation program for modeling lymphatic filariasis and its control. Methods Inf Med 1998; 37 (01) 97-108.
  • 24 Verdier C, Flory A. An information system for epidemiology based on a computer-based medical record. Methods Inf Med 1994; 33 (05) 496-501.
  • 25 Rubel F, Fuchs K. A decision-support system for real-time risk assessment of airborne spread of the foot-and-mouth disease virus. Methods Inf Med 2005; 44 (04) 590-595.