AORTA, Inhaltsverzeichnis CC BY 4.0 · Aorta (Stamford) 2013; 01(01): 13-22DOI: 10.12945/j.aorta.2013.12.011 Original Research Article Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.Aneurysm Development in Patients With Bicuspid Aortic Valve (BAV): Possible Connection to Repair Deficiency? Shohreh Maleki 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden , Hanna M. Björck 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden , Valentina Paloschi 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden , Sanela Kjellqvist 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden , Lasse Folkersen 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden , Veronica Jackson 2 Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden , Anders Franco-Cereceda 2 Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden , Per Eriksson 1 Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden › InstitutsangabenArtikel empfehlen Abstract Key Words Key WordsBicuspid aortic valve (BAV) - TGFβ pathway - Hemodynamics - Angiogenesis - Endothelial cells Volltext Referenzen References 1 El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 2009; 6: 771-786 . 10.1038/nrcardio.2009.191 2 Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 2011; 473: 308-316 . 10.1038/nature10145 3 Achneck H, Modi B, Shaw C, Rizzo J, Albornoz G, Fusco D. , et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 2005; 128: 1580-1586 . 10.1378/chest.128.3.1580 4 Hung A, Zafar M, Mukherjee S, Tranquilli M, Scoutt LM, Elefteriades JA. Carotid intima-media thickness provides evidence that ascending aortic aneurysm protects against systemic atherosclerosis. Cardiology 2012; 123: 71-77 5 Cecconi M, Nistri S, Quarti A, Manfrin M, Colonna PL, Molini E. , et al. Aortic dilatation in patients with bicuspid aortic valve. J Cardiovasc Med (Hagerstown) 2006; 7: 11-20 . 10.2459/01.JCM.0000199777.85343.ec 6 Cotrufo M, Della Corte A. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: Identification of a definite syndrome. J Cardiovasc Med (Hagerstown) 2009; 10: 291-297 . 10.2459/JCM.0b013e3283217e29 7 Laforest B, Nemer M. Genetic insights into bicuspid aortic valve formation. . Cardiol Res Pract. 2012 10.1155/2012/180297 8 Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol 2010; 55: 2789-2800 . 10.1016/j.jacc.2009.12.068 9 Sans-Coma V, Carmen Fernandez M, Fernandez B, Duran AC, Anderson RH. , et al. Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves. J Anat 2012; 220: 92-101 . 10.1111/j.1469–7580.2011.01440.x 10 Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N. , et al. Mutations in smooth muscle alpha-actin (acta2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39: 1488-1493 . 10.1038/ng.2007.6 11 Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L. , et al. Nonsynonymous variants in the smad6 gene predispose to congenital cardiovascular malformation. Hum Mutat 2012; 33: 720-727 . 10.1002/humu.22030 12 Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T. Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg 2011; 91: e70-71 . 10.1016/j.athoracsur.2010.12.060 13 Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN. , et al. Mutations in NOTCH1 cause aortic valve disease. Nature 2005; 437: 270-274 . 10.1038/nature03940 14 McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. . 3rd ed. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007; 134: 290-296 . 10.1016/j.jtcvs.2007.02.041 15 Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. . J Thorac Cardiovasc Surg. 2012 (in press). 16 Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S. , et al. Novel missense mutations (p.T596m and p.P1797h) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 2006; 345: 1460-1465 . 10.1016/j.bbrc.2006.05.046 17 Mordi I, Tzemos N. Bicuspid aortic valve disease: A comprehensive review. Cardiol Res Pract 2012; Article ID 196037, 7 p. 10.1155/2012/196037 18 Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 2000; 101: 2345-2348 . 10.1161/01.CIR.101.20.2345 19 Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg 2007; 83: 1290-1294 . 10.1016/j.athoracsur.2006.11.086 20 Bauer M, Siniawski H, Pasic M, Schaumann B, Hetzer R. Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J Card Surg 2006; 21: 218-220 . 10.1111/j.1540-8191.2006.00219.x 21 Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT. , et al. 4D flow CMR in assessment of valve-related ascending aortic disease. J Am Coll Cardiol, Cardiovasc Imaging 2011; 4: 781-787 22 Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S. , et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 2012; 5: 457-466 . 10.1161/CIRCIMAGING.112.973370 23 Girdauskas E, Disha K, Borger MA, Kuntze T. Relation of bicuspid aortic valve morphology to the dilatation pattern of the proximal aorta: Focus on the transvalvular flow. Cardiol Res Pract 2012; Article ID 478259, 5 p. 10.1155/2012/478259 24 Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 1971; 177: 109-159 . 10.1098/rspb.1971.0019 25 Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM. , et al. Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat Cell Biol 2012; 14: 249-256 . 10.1038/ncb2441 26 White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 2011; 226: 2841-2848 . 10.1002/jcp.22629 27 Dolan JM, Sim FJ, Meng H, Kolega J. Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 2012; 302: C1109-1118 . 10.1152/ajpcell.00369.2011 28 Conway DE, Williams MR, Eskin SG, McIntire LV. Endothelial cell responses to atheroprone flow are driven by two separate flow components: Low time-average shear stress and fluid flow reversal. Am J Physiol Heart Circ Physiol 2010; 298: H367-374 . 10.1152/ajpheart.00565.2009 29 Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone Jr MA. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001; 98: 4478-4485 . 10.1073/pnas.071052598 30 Wang N, Miao H, Li YS, Zhang P, Haga JH, Hu Y. , et al. Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem Biophys Res Commun 2006; 341: 1244-1251 . 10.1016/j.bbrc.2006.01.089 31 Dolan JM, Meng H, Singh S, Paluch R, Kolega J. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 2011; 39: 1620-1631 . 10.1007/s10439–011-0267–8 32 LaMack JA, Friedman MH. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol 2007; 293: H2853-2859 . 10.1152/ajpheart.00244.2007 33 Wessells H, Sullivan CJ, Tsubota Y, Engel KL, Kim B, Olson NE. , et al. Transcriptional profiling of human cavernosal endothelial cells reveals distinctive cell adhesion phenotype and role for claudin 11 in vascular barrier function. Physiol Genomics 2009; 39: 100-108 . 10.1152/physiolgenomics.90354.2008 34 Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H. , et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: Influence of shear stress. Arterioscler Thromb Vasc Biol 2006; 26: 69-77 . 10.1161/01.ATV.0000196624.70507.0d 35 Ni CW, Qiu H, Rezvan A, Kwon K, Nam D, Son DJ. , et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116: e66-73 . 10.1182/blood-2010–04-278192 36 Fan J, Li X, Zhong L, Hao T, Di J, Liu F. , et al. MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats. Folia Histochem Cytobiol 2010; 48: 455-461 37 Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK. , et al. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 2011; 48: 429-442 . 10.1159/000324840 38 Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD. , et al. Progressive aneurysm development following hemodynamic insult. J Neurosurg 2011; 114: 1095-1103 . 10.3171/2010.9.JNS10368 39 Gao L, Hoi Y, Swartz DD, Kolega J, Siddiqui A, Meng H. Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke 2008; 39: 2085-2090 . 10.1161/STROKEAHA.107.509422 40 Kritharis EP, Giagini AT, Kakisis JD, Dimitriou CA, Stergiopulos N, Tsangaris S. , et al. Time course of flow-induced adaptation of carotid artery biomechanical properties, structure and zero-stress state in the arteriovenous shunt. Biorheology 2012; 49: 65-82 41 Grundmann S, Piek JJ, Pasterkamp G, Hoefer IE. Arteriogenesis: Basic mechanisms and therapeutic stimulation. Eur J Clin Invest 2007; 37: 755-766 . 10.1111/j.1365-2362.2007.01861.x 42 Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J. , et al. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc Pathol 2009; 18: 83-91 . 10.1016/j.carpath.2008.01.001 43 Santarpia G, Scognamiglio G, Di Salvo G, D'Alto M, Sarubbi B, Romeo E. , et al. Aortic and left ventricular remodeling in patients with bicuspid aortic valve without significant valvular dysfunction: A prospective study. Int J Cardiol 2012; 158: 347-352 . 10.1016/j.ijcard.2011.01.046 44 Pees C, Michel-Behnke I. Morphology of the bicuspid aortic valve and elasticity of the adjacent aorta in children. Am J Cardiol 2012; 110: 1354-1360 . 10.1016/j.amjcard.2012.06.043 45 Della Corte A, Quarto C, Bancone C, Castaldo C, Di Meglio F, Nurzynska D. , et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: Focus on cell-matrix signaling. J Thorac Cardiovasc Surg 2008; 135: 8-18 46 Cotrufo M, Della Corte A, De Santo LS, Quarto C, De Feo M, Romano G. , et al. Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: Preliminary results. J Thorac Cardiovasc Surg 2005; 130: 504-511 47 Della Corte A, De Santo LS, Montagnani S, Quarto C, Romano G, Amarelli C. , et al. Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: Congenital bicuspid valve versus Marfan's syndrome. J Heart Valve Dis 2006; 15: 20-27 ; discussion 27. 48 Mohamed SA, Misfeld M, Hanke T, Charitos EI, Bullerdiek J, Belge G. , et al. Inhibition of caspase-3 differentially affects vascular smooth muscle cell apoptosis in the concave versus convex aortic sites in ascending aneurysms with a bicuspid aortic valve. Ann Anat 2010; 192: 145-150 . 10.1016/j.aanat.2010.02.006 49 Mohamed SA, Radtke A, Saraei R, Bullerdiek J, Sorani H, Nimzyk R. , et al. Locally different endothelial nitric oxide synthase protein levels in ascending aortic aneurysms of bicuspid and tricuspid aortic valve. .Cardiol Res Pract. 2012 10.1155/2012/165957 50 Folkersen L, Wagsater D, Paloschi V, Jackson V, Petrini J, Kurtovic S. , et al. Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: The ASAP study. Mol Med 2011; 17: 1365-1373 51 LeMaire SA, Wang X, Wilks JA, Carter SA, Wen S, Won T. , et al. Matrix metalloproteinases in ascending aortic aneurysms: Bicuspid versus trileaflet aortic valves. J Surg Res 2005; 123: 40-48 . 10.1016/j.jss.2004.06.007 52 Kurtovic S, Paloschi V, Folkersen L, Gottfries J, Franco-Cereceda A, Eriksson P. Diverging alternative splicing fingerprints in the transforming growth factor-beta signaling pathway identified in thoracic aortic aneurysms. Mol Med 2011; 17: 665-675 53 Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Mamede Branca RM, Lehtio J. , et al. A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve. Mol Cell Proteomics 2013; 12: 407-425 54 Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G. , et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 2003; 162: 149-160 . 10.1083/jcb.200212079 55 Paloschi V, Kurtovic S, Folkersen L, Gomez D, Wagsater D, Roy J. , et al. Impaired splicing of fibronectin is associated with thoracic aortic aneurysm formation in patients with bicuspid aortic valve. Arterioscler Thromb Vasc Biol 2011; 31: 691-697 . 10.1161/ATVBAHA.110.218461 56 Blunder S, Messner B, Aschacher T, Zeller I, Turkcan A, Wiedemann D. , et al. Characteristics of TAV- and BAV-associated thoracic aortic aneurysms–smooth muscle cell biology, expression profiling, and histological analyses. Atherosclerosis 2012; 220: 355-361 . 10.1016/j.atherosclerosis.2011.11.035 57 Maleki S, Bjorck HM, Folkersen L, Nilsson R, Renner J, Caidahl K. , et al. Identification of a novel flow-mediated gene expression signature in patients with bicuspid aortic valve. J Mol Med 2013; 91: 129-139 58 Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B. , et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437: 426-431 . 10.1038/nature03952 59 Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: Vascular rheumatology. Arthritis Res Ther 2008; 10 (05) 224 60 Hagmann H, Thadhani R, Benzing T, Karumanchi SA, Stepan H. The promise of angiogenic markers for the early diagnosis and prediction of preeclampsia. Clin Chem 2012; 58: 837-845 . 10.1373/clinchem.2011.169094 61 Shworak NW. Angiogenic modulators in valve development and disease: Does valvular disease recapitulate developmental signaling pathways?. Curr Opin Cardiol 2004; 19: 140-146 . 10.1097/00001573-200403000-00013 62 Hakuno D, Kimura N, Yoshioka M, Fukuda K. Role of angiogenetic factors in cardiac valve homeostasis and disease. J Cardiovasc Transl Res 2011; 4: 727-740 . 10.1007/s12265–011-9317–8 63 Mariscalco G, Lorusso R, Sessa F, Bruno VD, Piffaretti G, Banach M. , et al. Imbalance between pro-angiogenic and anti-angiogenic factors in rheumatic and mixomatous mitral valves. Int J Cardiol 2011; 152: 337-344 . 10.1016/j.ijcard.2010.08.001 64 Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10: 138-146 . 10.1038/nrc2791 65 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T. , et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967 . 10.1126/science.275.5302.964 66 Geft D, Schwartzenberg S, George J. Circulating endothelial progenitor cells in cardiovascular disorders. Expert Rev Cardiovasc Ther 2008; 6: 1115-1121 . 10.1586/14779072.6.8.1115 67 Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2012; 2: a006692 68 Ergun S, Tilki D, Klein D. Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxid Redox Signal 2011; 15: 981-995 . 10.1089/ars.2010.3507 69 Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G. , et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 2007; 25: 1627-1634 . 10.1634/stemcells.2006-0731 70 Psaltis PJ, Harbuzariu A, Delacroix S, Witt TA, Holroyd EW, Spoon DB. , et al. Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 2012; 125: 592-603 . 10.1161/CIRCULATIONAHA.111.059360 71 Yoder MC. Aortic tissue as a niche for hematopoiesis. Circulation 2012; 125: 565-567 . 10.1161/CIRCULATIONAHA.111.078865 72 Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: Pillars against the blood flow. Acta Physiol (Oxford) 2011; 202: 213-223 . 10.1111/j.1748–1716.2011.02321.x 73 Sessa WC. Molecular control of blood flow and angiogenesis: Role of nitric oxide. J Thromb Haemost 2009; 7 (suppl 1) 35-37 74 Egginton S. In vivo shear stress response. Biochem Soc Trans 2011; 39: 1633-1638 . 10.1042/BST20110715 75 Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 2011; 108: 15342-15347 . 10.1073/pnas.1105316108 76 Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and VEGF signalling during angiogenesis. Nature 2010; 464: 1196-1200 . 10.1038/nature08889 77 Tian J, Fratz S, Hou Y, Lu Q, Gorlach A, Hess J. , et al. Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease. Physiol Genomics 2011; 43: 87-98 . 10.1152/physiolgenomics.00135.2010 78 Asano Y, Ichioka S, Shibata M, Ando J, Nakatsuka T. Sprouting from arteriovenous shunt vessels with increased blood flow. Med Biol Eng Comput 2005; 43: 126-130 . 10.1007/BF02345133 79 Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A. , et al. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 2003; 95: 2081-2088 80 Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J. , et al. Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459: 1131-1135 . 10.1038/nature08073 81 Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T. , et al. Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 2009; 106: 203-211 82 Cui X, Zhang X, Guan X, Li H, Li X, Lu H. , et al. Shear stress augments the endothelial cell differentiation marker expression in late EPCS by upregulating integrins. Biochem Biophys Res Commun 2012; 425: 419-425 . 10.1016/j.bbrc.2012.07.115 83 Suzuki Y, Yamamoto K, Ando J, Matsumoto K, Matsuda T. Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces. Biochem Biophys Res Commun 2012; 423: 91-97 . 10.1016/j.bbrc.2012.05.088 84 Hsiai TK, Wu JC. Hemodynamic forces regulate embryonic stem cell commitment to vascular progenitors. Curr Cardiol Rev 2008; 4: 269-274 . 10.2174/157340308786349471 85 Ogawa R. Mechanobiology of scarring. Wound Repair Regen 2011; 19 (suppl 1) s2-9 86 van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol Heart Circ Physiol 2010; 298: H719-725 . 10.1152/ajpheart.00933.2009 87 Hsu S, Thakar R, Li S. Haptotaxis of endothelial cell migration under flow. Methods Mol Med 2007; 139: 237-250 . 10.1007/978–1-59745–571-8_15 88 Albuquerque ML, Waters CM, Savla U, Schnaper HW, Flozak AS. Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol 2000; 279: H293-302 89 Gojova A, Barakat AI. Vascular endothelial wound closure under shear stress: Role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 2005; 98: 2355-2362 . 10.1152/japplphysiol.01136.2004 90 Albuquerque ML, Flozak AS. Wound closure in sheared endothelial cells is enhanced by modulation of vascular endothelial-cadherin expression and localization. Exp Biol Med (Maywood) 2002; 227: 1006-1016 91 Rateri DL, Moorleghen JJ, Balakrishnan A, Owens III AP, Howatt DA, Subramanian V. , et al. Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor−/− mice. Circ Res 2011; 108: 574-581 . 10.1161/CIRCRESAHA.110.222844 92 Shao ES, Lin L, Yao Y, Bostrom KI. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 2009; 114: 2197-2206 . 10.1182/blood-2009–01-199166 93 Froese N, Kattih B, Breitbart A, Grund A, Geffers R, Molkentin JD. , et al. GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine transforming growth factor beta/activin receptor-like kinase 5 signaling. J Biol Chem 2011; 286: 5680-5690 . 10.1074/jbc.M110.176925 94 Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. Embo J 2002; 21: 1743-1753 . 10.1093/emboj/21.7.1743 95 Ito C, Akimoto T, Ioka T, Kobayashi T, Kusano E. TGF-beta inhibits vascular sprouting through TGF-beta type I receptor in the mouse embryonic aorta. Tohoku J Exp Med 2009; 218: 63-71 . 10.1620/tjem.218.63 96 Hu-Lowe DD, Chen E, Zhang L, Watson KD, Mancuso P, Lappin P. , et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 2011; 71: 1362-1373 . 10.1158/1538-7445.AM2011-1362, 10.1158/0008-5472.CAN-10-1451 97 Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ. , et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 2010; 207: 85-100 . 10.1084/jem.20091309 98 van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Stampino CG, Hu-Lowe D. , et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 2012; 287: 18551-18561 . 10.1074/jbc.M111.338103 99 Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE. , et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 2010; 9: 379-388 . 10.1158/1535–7163.MCT-09–0650 100 Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 2006; 26: 1712-1720 . 10.1161/01.ATV.0000225287.20034.2c 101 Orlova VV, Liu Z, Goumans MJ, ten Dijke P. Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 2011; 26: 1219-1230 102 Mahmoud M, Upton PD, Arthur HM. Angiogenesis regulation by TGFbeta signalling: Clues from an inherited vascular disease. Biochem Soc Trans 2011; 39: 1659-1666 . 10.1042/BST20110664 103 Cunha SI, Pietras K. ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 2011; 117: 6999-7006 . 10.1182/blood-2011–01-330142 104 Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L. , et al. BMP-9 signals via ALK1 and inhibits BFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007; 120: 964-972 . 10.1242/jcs.002949 105 Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T. , et al. VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci 2009; 122: 3294-3302 . 10.1242/jcs.048942 106 Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A. , et al. ALK1 signaling inhibits angiogenesis by cooperating with the NOTCH pathway. Dev Cell 2012; 22: 489-500 . 10.1016/j.devcel.2012.02.005 107 Tian H, Mythreye K, Golzio C, Katsanis N, Blobe GC. Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. Embo J 2012; 31: 3885-3900 . 10.1038/emboj.2012.246 108 Rudini N, Felici A, Giampietro C, Lampugnani M, Corada M, Swirsding K. , et al. Ve-cadherin is a critical endothelial regulator of TGF-beta signalling. Embo J 2008; 27: 993-1004 . 10.1038/emboj.2008.46 109 Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: Who is talking to whom about what?. Circ Res 2007; 100: 1556-1568 . 10.1161/01.RES.0000266408.42939.e4 110 Wooten EC, Iyer LK, Montefusco MC, Hedgepeth AK, Payne DD, Kapur NK. , et al. Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve. PLoS One 2010; 5: e8830 . 10.1371/journal.pone.0008830 111 Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol 2009; 29: 254-260 . 10.1161/ATVBAHA.108.176347 112 ten Dijke P, Egorova AD, Goumans MJ, Poelmann RE, Hierck BP. TGF-beta signaling in endothelial-to-mesenchymal transition: The role of shear stress and primary cilia. Sci Signal 2012; 5: pt2 113 Egorova AD, Khedoe PP, Goumans MJ, Yoder BK, Nauli SM, ten Dijke P. , et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 2011; 108: 1093-1101 . 10.1161/CIRCRESAHA.110.231860 114 Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K. , et al. Interaction between ALK1 and blood flow in the development of arteriovenous malformations. Development 2011; 138: 1573-1582 . 10.1242/dev.060467 115 Seghers L, de Vries MR, Pardali E, Hoefer IE, Hierck BP, ten Dijke P. , et al. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 2012; 16: 2440-2450 . 10.1111/j.1582–4934.2012.01561.x 116 Majesky MW, Dong XR, Hoglund VJ. Parsing aortic aneurysms: More surprises. Circ Res 2011; 108: 528-530 . 10.1161/CIRCRESAHA.111.240861