Thromb Haemost 2007; 98(03): 488-496
DOI: 10.1160/TH07-03-0179
Theme Issue Article
Schattauer GmbH

Invasion mechanisms of Gram-positive pathogenic cocci

Patric D. Nitsche-Schmitz
1   Helmholtz Centre for Infection Research (HZI), Microbial Pathogenesis, Braunschweig, Germany
,
Manfred Rohde
1   Helmholtz Centre for Infection Research (HZI), Microbial Pathogenesis, Braunschweig, Germany
,
Gursharan S. Chhatwal
1   Helmholtz Centre for Infection Research (HZI), Microbial Pathogenesis, Braunschweig, Germany
› Author Affiliations
Further Information

Publication History

Received 08 March 2007

Accepted after revision 11 May 2007

Publication Date:
28 November 2017 (online)

Summary

Gram-positive cocci are important human pathogens. Streptococci and staphylococci in particular are a major threat to human health,since they cause a variety of serious invasive infections. Their invasion into normally sterile sites of the host depends on elaborated bacterial mechanisms that involve adhesion to the host tissue, its degradation, internalisation by host cells, and passage through epithelia and endothelia. Interactions of bacterial surface proteins with proteins of the host’s extracellular matrix as well as with cell surface receptors are crucial factors in these processes, and some of the key mechanisms are similar in many pathogenic Gram-positive cocci.Therapies that interfere with these mechanisms may become efficient alternatives to today’s antibiotic treatments.

 
  • References

  • 1 Chhatwal GS, Preissner KT. Extracellular matrix interaction with Gram-positive bacteria. In: Grampositive pathognes. Washington, D.C.: ASM Press; 2006: 89-99.
  • 2 Courtney HS, Hasty DL, Dale JB. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 2002; 34: 77-87.
  • 3 Hauck CR, Ohlsen K. Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus . Curr Opin Microbiol 2006; 9: 5-11.
  • 4 Sinha B, Herrmann M. Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus . Thromb Haemost 2005; 94: 266-277.
  • 5 Almeida RA, Matthews KR, Cifrian E. et al. Staphylococcus aureus invasion of bovine mammary epithelial cells. J Dairy Sci 1996; 79: 1021-1026.
  • 6 Molinari G, Chhatwal GS. Streptococcal invasion. Curr Opin Microbiol 1999; 2: 56-61.
  • 7 Usui A, Murai M, Seki K. et al. Conspicuous ingestion of Staphylococcus aureus organisms by murine fibroblasts in vitro. Microbiol Immunol 1992; 36: 545-550.
  • 8 Beachey EH, Ofek I. Epithelial cell binding of group A streptococci by lipoteichoic acid on fimbriae denuded of M protein. J Exp Med 1976; 143: 759-771.
  • 9 Leon O, Panos C. Streptococcus pyogenes clinical isolates and lipoteichoic acid. Infect Immun 1990; 58: 3779-3787.
  • 10 Courtney HS, von Hunolstein C, Dale JB. et al. Lipoteichoic acid and M protein: dual adhesins of group A streptococci. Microb Pathog 1992; 12: 199-208.
  • 11 Courtney HS, Hasty DL. Aggregation of group A streptococci by human saliva and effect of saliva on streptococcal adherence to host cells. Infect Immun 1991; 59: 1661-1666.
  • 12 Weidenmaier C, Kokai-Kun JF, Kristian SA. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 2004; 10: 243-245.
  • 13 Weidenmaier C, Peschel A, Xiong YQ. et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 2005; 191: 1771-1777.
  • 14 Simpson WA, Beachey EH. Adherence of group A streptococci to fibronectin on oral epithelial cells. Infect Immun 1983; 39: 275-279.
  • 15 Hasty DL, Ofek I, Courtney HS. et al. Multiple adhesins of streptococci. Infect Immun 1992; 60: 2147-2152.
  • 16 Bisno AL, Brito MO, Collins CM. Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003; 3: 191-200.
  • 17 Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000; 13: 470-511.
  • 18 Fischetti VA. Streptococcal M protein: molecular design and biological behavior. Clin Microbiol Rev 1989; 2: 285-314.
  • 19 Lancefield RC. Current knowledge of type-specific M antigens of group A streptococci. J Immunol 1962; 89: 307-313.
  • 20 Ellen RP, Gibbons RJ. Parameters affecting the adherence and tissue tropisms of Streptococcus pyogenes. Infect Immun 1974; 9: 85-91.
  • 21 Ellen RP, Gibbons RJ. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: prerequisite for virulence. Infect Immun 1972; 5: 826-830.
  • 22 Nitsche-Schmitz DP, Rohde M, Chhatwal GS. Adhesion and Invasion of Streptococci in Eukaryotic Cells. Norwich, U. K.: Horizon Bioscience; 2007
  • 23 Dinkla K, Rohde M, Jansen WT. et al. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest 2003; 111: 1905-1912.
  • 24 Nitsche DP, Johansson HM, Frick IM. et al. Streptococcal protein FOG, a novel matrix adhesin interacting with collagen I in vivo. J Biol Chem 2006; 281: 1670-1679.
  • 25 Xu Y, Rivas JM, Brown EL. et al. Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J Infect Dis 2004; 189: 2323-2333.
  • 26 Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491-497.
  • 27 Dziewanowska K, Carson AR, Patti JM. et al. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 2000; 68: 6321-6328.
  • 28 Sinha B, Francois P, Que YA. et al. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 2000; 68: 6871-6878.
  • 29 Cleary PP, Cue D. High frequency invasion of mammalian cells by beta hemolytic streptococci. Subcell Biochem 2000; 33: 137-166.
  • 30 Cue D, Southern SO, Southern PJ. et al. A nonpeptide integrin antagonist can inhibit epithelial cell ingestion of Streptococcus pyogenes by blocking formation of integrin alpha 5beta 1-fibronectin-M1 protein complexes. Proc Natl Acad Sci USA 2000; 97: 2858-2863.
  • 31 Fowler T, Wann ER, Joh D. et al. Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 2000; 79: 672-679.
  • 32 Molinari G, Talay SR, Valentin-Weigand P. et al. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect Immun 1997; 65: 1357-1363.
  • 33 Talay SR, Zock A, Rohde M. et al. Co-operative binding of human fibronectin to Sfbl protein triggers streptococcal invasion into respiratory epithelial cells. Cell Microbiol 2000; 2: 521-535.
  • 34 Walker MJ, McArthur JD, McKay F. et al. Is plasminogen deployed as a Streptococcus pyogenes virulence factor?. Trends Microbiol 2005; 13: 308-313.
  • 35 Berge A, Sjöbring U. PAM, a novel plasminogenbinding protein from Streptococcus pyogenes . J Biol Chem 1993; 268: 25417-25424.
  • 36 Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-14515.
  • 37 Pancholi V, Fischetti VA. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 1993; 90: 8154-8158.
  • 38 Bergmann S, Rohde M, Hammerschmidt S. Glyceraldehyde- 3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogenbinding protein. Infect Immun 2004; 72: 2416-2419.
  • 39 Bergmann S, Rohde M, Chhatwal GS. et al. alpha- Enolase of Streptococcus pneumoniae is a plasmin ( ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001; 40: 1273-1287.
  • 40 Bergmann S, Rohde M, Preissner KT. et al. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 2005; 94: 304-311.
  • 41 Lähteenmäki K, Kuusela P, Korhonen TK. Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 2001; 25: 531-552.
  • 42 Kuusela P, Ullberg M, Saksela O. et al. Tissue-type plasminogen activator-mediated activation of plasminogen on the surface of group A, C, and G streptococci. Infect Immun 1992; 60: 196-201.
  • 43 Khil J, Im M, Heath A. et al. Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J Infect Dis 2003; 188: 497-505.
  • 44 Coleman JL, Benach JL. Use of the plasminogen activation system by microorganisms. J Lab Clin Med 1999; 134: 567-576.
  • 45 Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens?. Trends Microbiol 1994; 2: 20-24.
  • 46 Svensson MD, Sjobring U, Bessen DE. Selective distribution of a high-affinity plasminogen-binding site among group A streptococci associated with impetigo. Infect Immun 1999; 67: 3915-3920.
  • 47 McKay FC, McArthur JD, Sanderson-Smith ML. et al. Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infection and a high incidence of invasive infection. Infect Immun 2004; 72: 364-370.
  • 48 Boyle MD, Lottenberg R. Plasminogen activation by invasive human pathogens. Thromb Haemost 1997; 77: 1-10.
  • 49 Gladysheva IP, Turner RB, Sazonova IY. et al. Coevolutionary patterns in plasminogen activation. Proc Natl Acad Sci USA 2003; 100: 9168-9172.
  • 50 Sun H, Ringdahl U, Homeister JW. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004; 305: 1283-1286.
  • 51 Greco R, De Martino L, Donnarumma G. et al. Invasion of cultured human cells by Streptococcus pyogenes . Res Microbiol 1995; 146: 551-560.
  • 52 LaPenta D, Rubens C, Chi E. et al. Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci USA 1994; 91: 12115-1219.
  • 53 Österlund A, Engstrand L. An intracellular sanctuary for Streptococcus pyogenes in human tonsillar epithelium--studies of asymptomatic carriers and in vitro cultured biopsies. Acta Otolaryngol 1997b 117: 883-888.
  • 54 Österlund A, Popa R, Nikkila T. et al. Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope 1997; 107: 640-647.
  • 55 Rubens CE, Smith S, Hulse M. et al. Respiratory epithelial cell invasion by group B streptococci. Infect Immun 1992; 60: 5157-5163.
  • 56 Haidan A, Talay SR, Rohde M. et al. Pharyngeal carriage of group C and group G streptococci and acute rheumatic fever in an Aboriginal population. Lancet 2000; 356: 1167-1169.
  • 57 Stinson MW, Alder S, Kumar S. Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun 2003; 71: 2365-2372.
  • 58 Norton PM, Rolph C, Ward PN. et al. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol Med Microbiol 1999; 26: 25-35.
  • 59 Talbot UM, Paton AW, Paton JC. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun 1996; 64: 3772-3777.
  • 60 Nobbs AH, Shearer BH, Drobni M. et al. Adherence and internalization of Streptococcus gordonii by epithelial cells involves beta1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol 2007; 9: 65-83.
  • 61 Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004; 304: 242-248.
  • 62 Cue D, Dombek PE, Lam H. et al. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun 1998; 66: 4593-4601.
  • 63 Molinari G, Rohde M, Guzman CA. et al. Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell Microbiol 2000; 2: 145-154.
  • 64 Benga L, Goethe R, Rohde M. et al. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 2004; 6: 867-881.
  • 65 Agerer F, Lux S, Michel A. et al. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrinmediated internalisation. J Cell Sci 2005; 118: 2189-2200.
  • 66 Menzies BE, Kourteva I. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 1998; 66: 5994-5998.
  • 67 Mempel M, Schnopp C, Hojka M. et al. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysinindependent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 2002; 146: 943-951.
  • 68 Que YA, Haefliger JA, Piroth L. et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 2005; 201: 1627-1635.
  • 69 Sinha B, Francois PP, Nusse O. et al. Fibronectinbinding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1999; 1: 101-117.
  • 70 Goodfellow AM, Hibble M, Talay SR. et al. Distribution and antigenicity of fibronectin binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the northern territory, Australia. J Clin Microbiol 2000; 38: 389-392.
  • 71 Kreikemeyer B, Talay SR, Chhatwal GS. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol Microbiol 1995; 17: 137-145.
  • 72 Natanson S, Sela S, Moses AE. et al. Distribution of fibronectin-binding proteins among group A streptococci of different M types. J Infect Dis 1995; 171: 871-878.
  • 73 Towers RJ, Fagan PK, Talay SR. et al. Evolution of sfbI encoding streptococcal fibronectin-binding protein I: horizontal genetic transfer and gene mosaic structure. J Clin Microbiol 2003; 41: 5398-5406.
  • 74 Schwarz-Linek U, Pilka ES, Pickford AR. et al. High affinity streptococcal binding to human fibronectin requires specific recognition of sequential F1 modules. J Biol Chem 2004; 279: 39017-39025.
  • 75 Talay SR, Valentin-Weigand P, Jerlstrom PG. et al. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect Immun 1992; 60: 3837-3844.
  • 76 Okada N, Pentland AP, Falk P. et al. M protein and protein F act as important determinants of cell-specific tropism of Streptococcus pyogenes in skin tissue. J Clin Invest 1994; 94: 965-977.
  • 77 Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30-33.
  • 78 Jadoun J, Ozeri V, Burstein E. et al. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J Infect Dis 1998; 178: 147-158.
  • 79 Ozeri V, Rosenshine I, Mosher DF. et al. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol Microbiol 1998; 30: 625-637.
  • 80 Ozeri V, Rosenshine I, Ben-Ze’Ev A. et al. De novo formation of focal complex-like structures in host cells by invading Streptococci . Mol Microbiol 2001; 41: 561-573.
  • 81 van Putten JP, Duensing TD, Cole RL. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 1998; 29: 369-379.
  • 82 Isberg RR, Barnes P. Subversion of integrins by enteropathogenic Yersinia . J Cell Sci 2001; 114: 21-28.
  • 83 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028-1032.
  • 84 Schoenwaelder SM, Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999; 11: 274-286.
  • 85 Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513-609.
  • 86 Agerer F, Michel A, Ohlsen K. et al. Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases. J Biol Chem 2003; 278: 42524-42531.
  • 87 Jevon M, Guo C, Ma B. et al. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun 1999; 67: 2677-2681.
  • 88 Kintarak S, Whawell SA, Speight PM. et al. Internalization of Staphylococcus aureus by human keratinocytes. Infect Immun 2004; 72: 5668-5675.
  • 89 Massey RC, Kantzanou MN, Fowler T. et al. Fibronectin- binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell Microbiol 2001; 3: 839-851.
  • 90 Greene C, McDevitt D, Francois P. et al. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol 1995; 17: 1143-1152.
  • 91 Brouillette E, Grondin G, Shkreta L. et al. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog 2003; 35: 159-168.
  • 92 Fowler T, Johansson S, Wary KK. et al. Src kinase has a central role in in vitro cellular internalization of Staphylococcus aureus . Cell Microbiol 2003; 5: 417-426.
  • 93 Dziewanowska K, Patti JM, Deobald CF. et al. Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 1999; 67: 4673-4678.
  • 94 Juuti KM, Sinha B, Werbick C. et al. Reduced adherence and host cell invasion by methicillin-resistant Staphylococcus aureus expressing the surface protein Pls. J Infect Dis 2004; 189: 1574-1584.
  • 95 Rohde M, Muller E, Chhatwal GS. et al. Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 2003; 5: 323-342.
  • 96 Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001; 3: 473-483.
  • 97 Cleary PP, McLandsborough L, Ikeda L. et al. High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol Microbiol 1998; 28: 157-167.
  • 98 Wang B, Li S, Southern PJ. et al. Streptococcal modulation of cellular invasion via TGF-beta1 signaling. Proc Natl Acad Sci USA 2006; 103: 2380-2385.
  • 99 Dombek PE, Cue D, Sedgewick J. et al. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol Microbiol 1999; 31: 859-870.
  • 100 Hagman MM, Dale JB, Stevens DL. Comparison of adherence to and penetration of a human laryngeal epithelial cell line by group A streptococci of various M protein types. FEMS Immunol Med Microbiol 1999; 23: 195-204.
  • 101 Medina E, Rohde M, Chhatwal GS. Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 2003; 71: 5376-5380.
  • 102 Cywes C, Wessels MR. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 2001; 414: 648-652.
  • 103 Schrager HM, Alberti S, Cywes C. et al. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J Clin Invest 1998; 101: 1708-1716.
  • 104 Cywes C, Stamenkovic I, Wessels MR. CD44 as a receptor for colonization of the pharynx by group A Streptococcus . J Clin Invest 2000; 106: 995-1002.
  • 105 Nyberg P, Sakai T, Cho KH. et al. Interactions with fibronectin attenuate the virulence of Streptococcus pyogenes . Embo J 2004; 23: 2166-2174.
  • 106 Gibson C, Fogg G, Okada N. et al. Regulation of host cell recognition in Streptococcus pyogenes . Dev Biol Stand 1995; 85: 137-144.
  • 107 Nyberg P, Rasmussen M, Von Pawel-Rammingen U. et al. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology 2004; 150: 1559-1569.
  • 108 Nizet V, Kim KS, Stins M. et al. Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 1997; 65: 5074-5081.
  • 109 Doran KS, Engelson EJ, Khosravi A. et al. Bloodbrain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 2005; 115: 2499-2507.
  • 110 Soriani M, Santi I, Taddei A. et al. Group B Streptococcus crosses human epithelial cells by a paracellular route. J Infect Dis 2006; 193: 241-250.
  • 111 Medina E, Goldmann O, Toppel AW. et al. Survival of Streptococcus pyogenes within host phagocytic cells: a pathogenic mechanism for persistence and systemic invasion. J Infect Dis 2003; 187: 597-603.
  • 112 Staali L, Morgelin M, Bjorck L. et al. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 2003; 5: 253-265.
  • 113 Staali L, Bauer S, Morgelin M. et al. Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes. Cell Microbiol 2006; 8: 690-703.
  • 114 Voyich JM, Sturdevant DE, Braughton KR. et al. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 2003; 100: 1996-2001.
  • 115 Kobayashi SD, Braughton KR, Whitney AR. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA 2003; 100: 10948-10953.
  • 116 Goldmann O, Rohde M, Chhatwal GS. et al. Role of macrophages in host resistance to group A streptococci. Infect Immun 2004; 72: 2956-2963.
  • 117 Thulin P, Johansson L, Low DE. et al. Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 2006; 3: e53.
  • 118 Terao Y, Kawabata S, Kunitomo E. et al. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 2001; 42: 75-86.
  • 119 Terao Y, Kawabata S, Nakata M. et al. Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem 2002; 277: 47428-47435.
  • 120 Courtney HS, Dale JB, Hasty DI. Differential effects of the streptococcal fibronectin-binding protein, FBP54, on adhesion of group A streptococci to human buccal cells and HEp-2 tissue culture cells. Infect Immun 1996; 64: 2415-2419.
  • 121 Alkan M, Ofek I, Beachey EH. Adherence pharyngeal and skin strains of group A streptococci to human skin and oral epithelial cells. Infect Immun 1977; 18: 555-557.
  • 122 Courtney HS, Bronze MS, Dale JB. et al. Analysis of the role of M24 protein in group A streptococcal adhesion and colonization by use of omega-interposon mutagenesis. Infect Immun 1994; 62: 4868-4873.
  • 123 Wang JR, Stinson MW. M protein mediates streptococcal adhesion to HEp-2 cells. Infect Immun 1994; 62: 442-448.
  • 124 Courtney HS, Hasty DL, Li Y. et al. Serum opacity factor is a major fibronectin-binding protein and a virulence determinant of M type 2 Streptococcus pyogenes . Mol Microbiol 1999; 32: 89-98.
  • 125 Rakonjac JV, Robbins JC, Fischetti VA. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun 1995; 63: 622-631.
  • 126 Kline JB, Xu S, Bisno AL. et al. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect Immun 1996; 64: 2122-2129.
  • 127 Schubert A, Zakikhany K, Pietrocola G. et al. The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 2004; 72: 6197-6205.
  • 128 Tenenbaum T, Bloier C, Adam R. et al. Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae . Infect Immun 2005; 73: 4404-4409.
  • 129 Holmes AR, McNab R, Millsap KW. et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin- binding protein that is essential for virulence. Mol Microbiol 2001; 41: 1395-1408.
  • 130 Wann ER, Gurusiddappa S, Hook M. The fibronectin- binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000; 275: 13863-13871.
  • 131 Palma M, Haggar A, Flock JI. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol 1999; 181: 2840-2845.
  • 132 Hussain M, Becker K, von Eiff C. et al. Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended- spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 2001; 183: 6778-6786.