Thromb Haemost 2007; 98(03): 557-563
DOI: 10.1160/TH07-02-0152
Theme Issue Article
Schattauer GmbH

Factors with conformational effects on haemostatic serpins: Implications in thrombosis

David Hernández-Espinosa
1   Department of Medicine, Centro Regional de Hemodonacin, University of Murcia, Murcia, Spain
,
Adriana Ordóñez
1   Department of Medicine, Centro Regional de Hemodonacin, University of Murcia, Murcia, Spain
,
Vicente Vicente
1   Department of Medicine, Centro Regional de Hemodonacin, University of Murcia, Murcia, Spain
,
Javier Corral
1   Department of Medicine, Centro Regional de Hemodonacin, University of Murcia, Murcia, Spain
› Author Affiliations
Further Information

Publication History

Received 27 February 2007

Accepte after resubmission 25 May 2007

Publication Date:
28 November 2017 (online)

Summary

Serpins are key actors of systems involving proteolytic reactions, such as the haemostatic system, as they are irreversible suicide inhibitors of serine proteases. The structural flexibility and physical properties of serpins that are required for their efficient inhibitory mechanism also make them especially vulnerable to even minor factors that induce conformational changes in the native form of these molecules, leading to a number of inactive conformations, such as latent, cleaved or polymers. Increasing numbers of conformational mutations affecting haemostatic serpins, mainly antithrombin, the main endogenous anticoagulant, have been described. These mutations cause circulating deficiencies of the molecules, in most cases due to intracellular retention, which may be associated with a hyper-coagulable state. Indeed, conformational mutations in antithrombin have been identified in patients with severe venous thrombosis,which has led to the hypothesis that these disorders might be included in the group of conformational diseases. Moreover,we have recently demonstrated that other factors,including both drugs,such as the treatment with L-asparaginase,or environmental factors, such as high temperatures or hyperlipidemia, may also have conformational consequences on hepatic antithrombin,thus resulting in intracellular aggregation and plasma deficiency, which may increase the risk of thrombosis. In this study,we review the causes of deficiency of haemostatic serpins that may be explained by conformational mechanisms, and their association with an increased risk of venous thrombosis.

 
  • References

  • 1 Irving JA, Pike RN, Lesk AM. et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 2000; 10: 1845-1864.
  • 2 Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J 2004; 378: 705-716.
  • 3 Silverman GA, Bird PI, Carrell RW. et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276: 33293-33296.
  • 4 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407: 923-926.
  • 5 Irving JA, Shushanov SS, Pike RN. et al. Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation. J Biol Chem 2002; 277: 13192-13201.
  • 6 Ligoxygakis P, Roth S, Reichhart JM. A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr Biol 2003; 13: 2097-2102.
  • 7 Pak SC, Kumar V, Tsu C. et al. SRP-2 is a crossclass inhibitor that participates in postembryonic development of the nematode Caenorhabditis elegans: initial characterization of the clade L serpins. J Biol Chem 2004; 279: 15448-15459.
  • 8 Levashina EA, Langley E, Green C. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 1999; 285: 1917-1919.
  • 9 Ray CA, Black RA, Kronheim SR. et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 1992; 69: 597-604.
  • 10 Van Gent D, Sharp P, Morgan K. et al. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 2003; 35: 1536-1547.
  • 11 Spronk HM, Govers-Riemslag JW, ten Cate H. The blood coagulation system as a molecular machine. Bioessays 2003; 25: 1220-1228.
  • 12 Kottke-Marchant K, Duncan A. Antithrombin deficiency: issues in laboratory diagnosis. Arch Pathol Lab Med 2002; 126: 1326-1336.
  • 13 Rezaie AR. Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by a template mechanism. Evidence that calcium alleviates Gla domain antagonism of heparin binding to factor Xa. J Biol Chem 1998; 273: 16824-16827.
  • 14 Huntington JA. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost 2003; 1: 1535-1549.
  • 15 Ishiguro K, Kojima T, Kadomatsu K. et al. Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 2000; 106: 873-878.
  • 16 Pike RN, Buckle AM, le Bonniec BF. et al. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J 2005; 272: 4842-4851.
  • 17 Han X, Fiehler R, Broze Jr. GJ. Isolation of a protein Z-dependent plasma protease inhibitor. Proc Natl Acad Sci U S A; 1998; 95: 9250-9255.
  • 18 Han X, Fiehler R, Broze Jr. GJ. Characterization of the protein Z-dependent protease inhibitor. Blood 2000; 96: 3049-3055.
  • 19 Heeb MJ, Cabral KM, Ruan L. Down-regulation of factor IXa in the factor Xase complex by protein Z-dependent protease inhibitor. J Biol Chem 2005; 280: 33819-33825.
  • 20 Tollefsen DM. Heparin cofactor II deficiency. Arch Pathol Lab Med 2002; 126: 1394-1400.
  • 21 Corral J, Gonzalez-Conejero R, Soria JM. et al. A nonsense polymorphism in the protein Z-dependent protease inhibitor increases the risk for venous thrombosis. Blood 2006; 108: 177-183.
  • 22 Water N, Tan T, Ashton F. et al. Mutations within the protein Z-dependent protease inhibitor gene are associated with venous thromboembolic disease: a new form of thrombophilia. Br J Haematol 2004; 127: 190-194.
  • 23 Broze Jr. GJ. Protein Z-dependent regulation of coagulation. Thromb Haemost 2001; 86: 8-13.
  • 24 Corral J, González-Conejero R, Hernández-Espinosa D. et al. Protein Z/Z-dependent protease inhibitor (PZ/ZPI) anticoagulant system and thrombosis. Br J Haematol 2007; 137: 99-108.
  • 25 Corral J, Aznar J, Gonzalez-Conejero R. et al. Homozygous deficiency of heparin cofactor II: relevance of P17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis. Circulation 2004; 110: 1303-1307.
  • 26 Razzari C, Martinelli I, Bucciarelli P. et al. Polymorphisms of the protein Z-dependent protease inhibitor (ZPI) gene and the risk of venous thromboembolism. Thromb Haemost 2006; 95: 909-910.
  • 27 Nicholl SM, Roztocil E, Davies MG. Plasminogen activator system and vascular disease. Curr Vasc Pharmacol 2006; 4: 101-116.
  • 28 Geiger M, Zechmeister-Machhart M, Uhrin P. et al. Protein C inhibitor (PCI). Immunopharmacology 1996; 32: 53-56.
  • 29 Huntington JA, Pannu NS, Hazes B. et al. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol 1999; 293: 449-455.
  • 30 Marszal E, Shrake A. Serpin crystal structure and serpin polymer structure. Arch Biochem Biophys 2006; 453: 123-129.
  • 31 Carrell RW, Lomas DA. Conformational disease. Lancet 1997; 350: 134-138.
  • 32 Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet 2002; 3: 759-768.
  • 33 Lomas DA. Molecular mousetraps, alpha1-antitrypsin deficiency and the serpinopathies. Clin Med 2005; 5: 249-257.
  • 34 Carrell RW, Lomas DA. Alpha1-antitrypsin deficiency. A model for conformational diseases. N Engl J Med 2002; 346: 45-53.
  • 35 Miranda E, Lomas DA. Neuroserpin: a serpin to think about. Cell Mol Life Sci 2006; 63: 709-722.
  • 36 Benetazzo MG, Gile LS, Bombieri C. et al. Alpha 1-antitrypsin TAQ I polymorphism and alpha 1-antichymotrypsin mutations in patients with obstructive pulmonary disease. Respir Med 1999; 93: 648-654.
  • 37 Fay A, Abinun M. Current management of hereditary angio-oedema (C‘1 esterase inhibitor deficiency). J Clin Pathol 2002; 55: 266-270.
  • 38 Corral J, Vicente V, Carrell RW. Thrombosis as a conformational disease. Haematologica 2005; 90: 238-246.
  • 39 Carrell RW, Huntington JA, Mushunje A. et al. The conformational basis of thrombosis. Thromb Haemost 2001; 86: 14-22.
  • 40 Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease?. Nat Struct Biol 1995; 2: 96-113.
  • 41 Silverstein MD, Heit JA, Mohr DN. et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 1998; 158: 585-593.
  • 42 Amderson Jr FA, Wheeler HB, Goldberg RJ. et al. Physician practices in the prevention of venous thromboembolism. Ann Intern Med 1991; 115: 591-595.
  • 43 Nordstrom M, Lindblad B, Bergqvist D. et al. A prospective study of the incidence of deep-vein thrombosis within a defined urban population. J Intern Med 1992; 232: 155-160.
  • 44 Heit JA, Silverstein MD, Mohr DN. et al. Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study. Arch Intern Med 1999; 159: 445-453.
  • 45 Laffan M, Tuddenham E. Science, medicine, and the future: assessing thrombotic risk. Br Med J 1998; 317: 520-523.
  • 46 Egeberg O. Thrombophilia caused by inheritable deficiency of blood antithrombin. Scand J Clin Lab Invest 1965; 17: 92.
  • 47 Bayston T, Lane D. Imperial College of London.. Antithrombin mutation database. http://wwwfom.sk/med.ic.ac.uk/medicine/about/divisions/is/haemo/coag/antithrombin.
  • 48 OMIM.. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107300
  • 49 HGMD.. http://www.hgmd.cf.ac.uk/ac/gene.php?gene=SERPINC1.
  • 50 Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med 2001; 344: 1222-1231.
  • 51 Han X, Huang ZF, Fiehler R. et al. The protein Z-dependent protease inhibitor is a serpin. Biochemistry 1999; 38: 11073-11078.
  • 52 Zhou A, Huntington JA, Carrell RW. Formation of the antithrombin heterodimer in vivo and the onset of thrombosis. Blood 1999; 94: 3388-3396.
  • 53 O’Reilly MS, Pirie-Shepherd S, Lane WS. et al. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999; 285: 1926-1928.
  • 54 Zhang W, Swanson R, Xiong Y. et al. Antiangiogenic antithrombin blocks the heparan sulfate-dependent binding of proangiogenic growth factors to their endothelial cell receptors. J Biol Chem 2006; 281: 37302-37310.
  • 55 Corral J, Huntington JA, Gonzalez-Conejero R. et al. Mutations in the shutter region of antithrombin result in formation of disulfide-linked dimers and severe venous thrombosis. J Thromb Haemost 2004; 2: 931-939.
  • 56 Picard V, Dautzenberg MD, Villoutreix BO. et al. Antithrombin F229L: a new homozygous variant leading to spontaneous antithrombin polymerization in vivo associated with severe childhood thrombosis. Blood 2003; 102: 919-925.
  • 57 Bruce D, Perry DJ, Borg J-Y. et al. Thromboembolic diseases due to conformational changes of antithrombin Rouen VI (187 Asnà Asp). J Clin Invest 1994; 94: 2265-2274.
  • 58 Beauchamp NJ, Pike RN, Daly M. et al. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. Blood 1998; 92: 2696-2706.
  • 59 Kanagawa Y, Shigekiyo T, Aihara K. et al. Molecular mechanism of type I congenital heparin cofactor (HC) II deficiency caused by a missense mutation at reactive P2 site: HC II Tokushima. Thromb Haemost 2001; 85: 101-107.
  • 60 Fitches AC, Lewandowski K, Olds RJ. Creation of an additional glycosylation site as a mechanism for type I antithrombin deficiency. Thromb Haemost 2001; 86: 1023-1027.
  • 61 Ozawa T, Takikawa Y, Niiya K. et al. Antithrombin Morioka (Cys 95-Arg): a novel missense mutation causing type I antithrombin deficiency. Thromb Haemost 1997; 77: 403.
  • 62 Emmerich J, Vidaud D, Alhenc-Gelas M. et al. Three novel mutations of antithrombin inducing highmolecular- mass compounds. Arterioscler Thromb 1994; 14: 1958-1965.
  • 63 Picard V, Bauters A, Khairy M. et al. Conformational Asn187Asp/Lys antithrombin variants and thrombosis. Clinical and biological features in 13 new heterozygotes. Thromb Haemost 2005; 93: 57-62.
  • 64 Lindo VS, Kakkar VV, Learmonth M. et al. Antithrombin- TRI (Ala382 to Thr) causing severe thromboembolic tendency undergoes the S-to-R transition and is associated with a plasma-inactive high-molecular- weight complex of aggregated antithrombin. Br J Haematol 1995; 89: 589-601.
  • 65 Verpy E, Biasotto M, Brai M. et al. Exhaustive mutation scanning by fluorescence-assisted mismatch analysis discloses new genotype-phenotype correlations in angioedema. Am J Hum Genet 1996; 59: 308-319.
  • 66 Davis AE, Aulak K, Parad RB. et al. C1 inhibitor hinge region mutations produce dysfunction by different mechanisms. Nature Genet 1992; 1: 354-358.
  • 67 Skriver K, Radziejewska E, Siebermann JA. et al. CpG mutations in the reactive site of human C1 inhibitor. J Bio Chem 1989; 264: 3066-3071.
  • 68 Siddique Z, McPhaden AR, Whaley K. Type II hereditary angio-oedema associated with two mutations in one allele of the C1-inhibitor gene around the reactivesite coding region. Hum Hered 1992; 42: 298-301.
  • 69 Levy NJ, Ramesh N, Cicardi M. et al. Type II hereditary angioneurotic edema that may result from a single nucleotide change in the codon for alanine-436 in the C1 inhibitor gene. Proc Nat Acad Sci 1990; 87: 265-268.
  • 70 Verpy E, Couture-Tosi E, Eldering E. et al. Crucial residues in the carboxy-terminal end of C1 inhibitor revealed by pathogenic mutants impaired in secretion or function. J Clin Invest 1995; 95: 350-359.
  • 71 Kalmar L, Bors A, Farkas H. et al. Mutation screening of the C1 inhibitor gene among Hungarian patients with hereditary angioedema. Hum Mutat 2003; 22: 498.
  • 72 Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-8966.
  • 73 Miura O, Sugahara Y, Aoki N. Hereditary alpha 2-plasmin inhibitor deficiency caused by a transportdeficient mutation (alpha 2-PI-Okinawa). Deletion of Glu137 by a trinucleotide deletion blocks intracellular transport. J Biol Chem 1989; 264: 18213-18219.
  • 74 The Serpin Database.. Structural medicine. http://www-structmed.cimr.cam.ac.uk/Serpins/serp_regions/table2.html.
  • 75 Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 2001; 1535: 221-235.
  • 76 Mushunje A, Evans G, Brennan SO. et al. Latent antithrombin and its detection, formation and turnover in the circulation. J Thromb Haemost 2004; 2: 2170-2177.
  • 77 Corral J, Rivera J, Martínez C. et al. Detection of conformational transformation of antithrombin in blood by crossed immunoelectrophoresis: New application for a classical method. Effect of temperature in plasmatic antithrombin; role in senescence of antithrombin and thrombosis. J Lab Clin Med 2003; 142: 298-315.
  • 78 Nar H, Bauer M, Stassen JM. et al. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297: 683-695.
  • 79 Zhou A, Stein PE, Huntington JA. et al. Serpin polymerization is prevented by a hydrogen bond network that is centered on his-334 and stabilized by glycerol. J Biol Chem 2003; 278: 15116-15122.
  • 80 De Stefano V, Sora F, Rossi E. et al. The risk of thrombosis in patients with acute leukemia: occurrence of thrombosis at diagnosis and during treatment. J Thromb Haemost 2005; 3: 1985-1992.
  • 81 Hernandez-Espinosa D, Minano A, Martinez C. et al. L-asparaginase-induced antithrombin type I deficiency: implications for conformational diseases. Am J Pathol 2006; 169: 142-153.
  • 82 Bell H, Odegaard OR, Andersson T. et al. Protein C in patients with alcoholic cirrhosis and other liver diseases. J Hepatol 1992; 14: 163-167.
  • 83 Castro MA, Goodwin TM, Shaw KJ. et al. Disseminated intravascular coagulation and antithrombin III depression in acute fatty liver of pregnancy. Am J Obstet Gynecol 1996; 174: 211-216.
  • 84 Hernandez-Espinosa D, Ayala I, Castells MT. et al. Intracellular retention of hepatic serpins caused by severe hyperlipidemia. Liver Int 2006; 26: 708-715.
  • 85 Hernandez-Espinosa D, Mota R, Miñano A. et al. In vivo effects of hyperthermia on the functional and conformational characteristics of antithrombin. J Thromb Haemost 2007; 5: 963-970.