Klin Monbl Augenheilkd 2008; 225(9): R143-R164
DOI: 10.1055/s-2008-1038769
KliMo-Refresher

© Georg Thieme Verlag KG Stuttgart · New York

Diagnostik und Management erblicher Optikusatrophien und Netzhautdegenerationen

K. Rüther1 , B. Leo-Kottler2
  • 1Charité-Augenklinik, Campus Virchow-Klinikum, Berlin
  • 2Department für Augenheilkunde, Neuroophthalmologie, Tübingen
Further Information

Publication History

Publication Date:
16 September 2008 (online)

Erbliche Optikusatrophien und Netzhautdegenerationen sind selten, sodass sich Routine im Umgang mit den Patienten außerhalb von Zentren kaum einstellen kann. Die Häufigkeit von erblichen Netzhautdegenerationen wird auf 1 : 3 000 geschätzt, die erblichen Optikusatrophien sind erheblich seltener. Die beiden Erkrankungsgruppen – erbliche Optikusatrophien und Netzhautdegenerationen – unterscheiden sich klinisch z. T. deutlich und sind in sich heterogen. Entscheidend ist jedoch für alle Erkrankungen aus diesem Bereich, aufgrund der Anamnese und der klinischen Befunde an sie zu denken, sie klinisch korrekt einzuordnen und – wenn möglich – die Diagnose durch eine molekulargenetische Untersuchung zu sichern.

Der Beitrag verfolgt somit die folgenden Ziele:

Beschreibung der wichtigsten erblichen Optikusatrophien, Darstellung der Symptomatik der wichtigsten erblichen Netzhautdegenerationen, Vorschläge für eine rationelle Diagnostik, Hinweise für die Betreuung der Patienten.

Literatur

  • 1 Kjer B, Eiberg H, Kjer P, Rosenberg T. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects.  Acta Ophthalmol Scand. 1996;  74 3-7
  • 2 Cohn A C, Toomes C, Potter C, Towns K V, Hewitt A W, Inglehearn C F, Craig J E, Mackey D A. Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations.  Am J Ophthalmol. 2007;  143 656-662
  • 3 Votruba M, Aijaz S, Moore A T. A review of primary hereditary optic neuropathies.  J Inherit Metab Dis. 2003;  26 209-227
  • 4 Alexander C, Votruba M, Pesch U E, Thiselton D L, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya S S, Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28.  Nat Genet. 2000;  26 211-215
  • 5 Delettre C, Lenaers G, Griffoin J M, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel C P. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy.  Nat Genet. 2000;  26 207-210
  • 6 Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko G V, Rudka T, Bartoli D, Polishuck R S, Danial N N, De Strooper B, Scorrano L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.  Cell. 2006;  126 177-189
  • 7 Bette S, Zimmermann U, Wissinger B, Knipper M. OPA1, the disease gene for optic atrophy type Kjer, is expressed in the inner ear.  Histochem Cell Biol. 2007;  128 421-430
  • 8 Payne M, Yang Z, Katz B J, Warner J E, Weight C J, Zhao Y, Pearson E D, Treft R L, Hillman T, Kennedy R J, Meire F M, Zhang K. Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1.  Am J Ophthalmol. 2004;  138 749-755
  • 9 Verny C, Loiseau D, Scherer C, Lejeune P, Chevrollier A, Gueguen N, Guillet V, Dubas F, Reynier P, Amati-Bonneau P, Bonneau D. Multiple sclerosis-like disorder in opa1-related autosomal dominant optic atrophy.  Neurology. 2008;  70 1152-1153
  • 10 Reynier P, Amati-Bonneau P, Verny C, Olichon A, Simard G, Guichet A, Bonnemains C, Malecaze F, Malinge M C, Pelletier J B, Calvas P, Dollfus H, Belenguer P, Malthièry Y, Lenaers G, Bonneau D. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract.  J Med Genet. 2004;  41 e110
  • 11 Kerrison J B, Arnould V J, Ferraz Sallum J M, Vagefi M R, Barmada M M, Li Y, Zhu D, Maumenee I CH. Genetic heterogeneity of dominant optic atrophy, Kjer type: Identification of a second locus on chromosome 18q12.2-12.3.  Arch Ophthalmol. 1999;  117 805-810
  • 12 Barbet F, Hakiki S, Orssaud C, Gerber S, Perrault I, Hanein S, Ducroq D, Dufier J L, Munnich A, Kaplan J, Rozet J M. A third locus for dominant optic atrophy on chromosome 22q.  J Med Genet. 2005;  42 e1
  • 13 Barbet F, Gerber S, Hakiki S, Perrault I, Hanein S, Ducroq D, Tanguy G, Dufier J L, Munnich A, Rozet J M, Kaplan J. A first locus for isolated autosomal recessive optic atrophy (ROA1) maps to chromosome 8q.  Eur J Hum Genet. 2003;  11 966-971
  • 14 Anikster Y, Kleta R, Shaag A, Gahl W A, Elpeleg O. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews.  Am J Hum Genet. 2001;  69 1218-1224
  • 15 Assink J J, Tijmes N T, ten Brink J B, Oostra R J, Riemslag F C, de Jong P T, Bergen A A. A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome.  Am J Hum Genet. 1997;  61 934-939
  • 16 Katz B J, Zhao Y, Warner J E, Tong Z, Yang Z, Zhang K. A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2.  Am J Med Genet A. 2006;  140 2207-2211
  • 17 Went L N, De Vries-De Mol E C, Volker-Dieben H J. A family with apparently sex-linked optic atrophy.  J Med Genet. 1975;  12 94-98
  • 18 Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish S J, Faucheux B, Trouillas P, Authier F J, Dürr A, Mandel J L, Vescovi A, Pandolfo M, Koenig M. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes.  Hum Mol Genet. 1997;  6 1771-1780
  • 19 Christodoulou K, Deymeer F, Serdaroğlu P, Ozdemir C, Poda M, Georgiou D M, Ioannou P, Tsingis M, Zamba E, Middleton L T. Mapping of the second Friedreich's ataxia (FRDA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity.  Neurogenetics. 2001;  3 127-132
  • 20 Strom T M, Hörtnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz K D, Meitinger T. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein.  Hum Mol Genet. 2001;  7 2021-2028
  • 21 Amr S, Heisey C, Zhang M, Xia X J, Shows K H, Ajlouni K, Pandya A, Satin L S, El-Shanti H, Shiang R. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2.  Am J Hum Genet. 2007;  81 673-683
  • 22 Alle Belege/Zitate/Literaturstellen zu LHON auf Anfrage. E-Mail: beate.leo-kottler@med.uni-tuebingen.de
  • 23 Kellner U, Tillack H, Renner A B. [Hereditary retinochoroidal dystrophies. Part 1: Pathogenesis, diagnosis, therapy and patient counselling].  Ophthalmologe. 2004;  101 307-319
  • 24 Jang Y P, Matsuda H, Itagaki Y, Nakanishi K, Sparrow J R. Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin.  J Biol Chem. 2005;  280 39732-39729
  • 25 Radu R A, Han Y, Bui T V, Nusinowitz S, Bok D, Lichter J, Widder K, Travis G H, Mata N L. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases.  Invest Ophthalmol Vis Sci. 2005;  46 4393-4401
  • 26 Demirci F Y, Rigatti B W, Mah T S, Gorin M B. A novel RPGR exon ORF15 mutation in a family with X-linked retinitis pigmentosa and Coats'-like exudative vasculopathy.  Am J Ophthalmol. 2006;  141 208-210
  • 27 Charbel Issa P, Scholl H P, Helb H M, Fleckenstein M, Inhetvin-Hutter C, Holz F G. [Unilateral Pigmented Paravenous Retinochoroidal Atrophy.]  Klin Monatsbl Augenheilkd. 2007;  224 791-793
  • 28 Moore A T, Fitzke F W, Kemp C M, Arden G B, Keen T J, Inglehearn C F, Bhattacharya S S, Bird A C. Abnormal dark adaptation kinetics in autosomal dominant sector retinitis pigmentosa due to rod opsin mutation.  Br J Ophthalmol. 1992;  76 465-469
  • 29 Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman M J, Futter C E, Ramalho J S, Tonagel F, Tanimoto N, Seeliger M W, Huxley C, Seabra M C. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia.  J Clin Invest. 2006;  116 386-394
  • 30 Ohkubo Y, Ueta A, Ito T, Sumi S, Yamada M, Ozawa K, Togari H. Vitamin B6-responsive ornithine aminotransferase deficiency with a novel mutation G237D.  Tohoku J Exp Med. 2005;  205 335-342
  • 31 Kaiser-Kupfer M I, Caruso R C, Valle D, Reed G F. Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy.  Arch Ophthalmol. 2004;  122 982-984
  • 32 Rüther K, Gal A, Kohlschütter A. [The role of the ophthalmologist in the management of juvenile neuronal ceroid lipofuscinosis].  Klin Monatsbl Augenheilkd. 2006;  223 542-544
  • 33 Apushkin M A, Fishman G A, Rajagopalan A S. Fundus findings and longitudinal study of visual acuity loss in patients with X-linked retinoschisis.  Retina. 2005;  25 612-618
  • 34 Acland G M, Aguirre G D, Ray J, Zhang Q, Aleman T S, Cideciyan A V, Pearce-Kelling S E, Anand V, Zeng Y, Maguire A M, Jacobson S G, Hauswirth W W, Bennett J. Gene therapy restores vision in a canine model of childhood blindness.  Nat Genet. 2001;  28 92-95
  • 35 Rüther K. [Adult Refsum disease. A retinal dystrophy with therapeutic options].  Ophthalmologe. 2005;  102 772-777
  • 36 Marigo V. Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration.  Cell Cycle. 2007;  6 652-655
  • 37 Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz A C, Clerin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dolle P, Poch O, Lambrou G, Sahel J A. Identification and characterization of rod-derived cone viability factor.  Nat Genet. 2004;  36 755-759
  • 38 Chalmel F, Leveillard T, Jaillard C, Lardenois A, Berdugo N, Morel E, Koehl P, Lambrou G, Holmgren A, Sahel J A, Poch O. Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential.  BMC Mol Biol. 2007;  8 74
  • 39 Bainbridge J W, Smith A J, Barker S S, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder G E, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya S S, Thrasher A J, Fitzke F W, Carter B J, Rubin G S, Moore A T, Ali R R. Effect of gene therapy on visual function in Leber's congenital amaurosis.  N Engl J Med. 2008;  358 2231-2239
  • 40 Maguire A M, Simonelli F, Pierce E A, Pugh Jr E N, Mingozzi F, Bennicelli J, Banfi S, Marshall K A, Testa F, Surace E M, Rossi S, Lyubarsky A, Arruda V R, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma J X, Redmond T M, Zhu X, Hauck B, Zelenaia O, Shindler K S, Maguire M G, Wright J F, Volpe N J, McDonnell J W, Auricchio A, High K A, Bennett J. Safety and efficacy of gene transfer for Leber's congenital amaurosis.  N Engl J Med. 2008;  358 2240-2248
  • 41 Berson E L. Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture.  Exp Eye Res. 2007;  85 7-14

Prof. Dr. med. Klaus Rüther

Charité-Augenklinik
Campus Virchow-Klinikum

Augustenburger Platz 1

13353 Berlin

Email: klaus.ruether@charite.de

Dr. med. Beate Leo-Kottler

Department für Augenheilkunde
Neuroophthalmologie

Schleichstraße 12 – 16

72076 Tübingen

Email: beate.leo-kottler@med.uni-tuebingen.de

    >