Klin Monbl Augenheilkd 2008; 225(9): 770-778
DOI: 10.1055/s-2008-1027487
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Chancen und Risiken der Anti-VEGF-Therapie

Chances and Risks of Anti-VEGF TherapyF. Ziemssen1 , P. Heiduschka2 , S. Peters1 , S. Grisanti3 , U. Schraermeyer2
  • 1Eberhard-Karl-Universität Tübingen, Department für Augenheilkunde
  • 2Sektion für experimentelle vitreoretinale Chirurgie, Department für Augenheilkunde, Tübingen
  • 3Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Klinik für Augenheilkunde
Weitere Informationen

Publikationsverlauf

Eingegangen: 22.3.2008

Angenommen: 14.4.2008

Publikationsdatum:
29. August 2008 (online)

Zusammenfassung

Der vascular endothelial growth factor (VEGF) besitzt eine Schlüsselrolle für die Regulation der Angiogenese. Weil der pluripotente Faktor aber auch physiologische Abläufe wie Hämodynamik, Hämatopoese, Immunabwehr, Hormonfreisetzung und Wundheilung beeinflusst, müssen mögliche Interaktionen einer medikamentösen Hemmung berücksichtigt werden. Die Erfahrungen mit der höher dosierten, intravenösen Gabe des Vollantikörpers Bevacizumab (Avastin®) haben das Augenmerk auf mögliche Nebenwirkungen durch eine vollständige VEGF-Blockade gelenkt. Bisherige Daten deuten darauf hin, dass selbst nach intravitrealer Injektion eine systemische Exposition erreicht wird, die zu messbaren Effekten führen kann. Eine Veränderung relevanter Kreislaufparameter könnte eine direkte Beeinflussung der Morbidität bewirken. Obwohl vorerst keine drastischen Auswirkungen beobachtet wurden, lassen die bisherigen Studien keine sichere Beurteilung von Signifikanz und Relevanz zu. Eine VEGF-Blockade kann den Tonus und die Autoregulation der Netzhautgefäße verändern. Die physiologische Fenestrierung der choroidalen Aderhautgefäße zeigte sich im Tiermodell signifikant reduziert. Mögliche Auswirkungen auf die lokale Sauerstoffversorgung in ischämischen Netzhautarealen (Gefäßverschlüsse) können für den klinischen Alltag nicht ausgeschlossen werden. In der Therapie retinaler Neovaskularisationen versprechen die VEGF-Inhibitoren allerdings gegenüber destruktiven Therapieverfahren (Laserkoagulation, Kryogulation) ein schnelles Ansprechen und weiteren Funktionserhalt (Gesichtsfeld). Die Ausreifung neovaskulärer Gefäße (Perizyten) und die sekundäre Formation von Membranen limitiert den Zeitpunkt, zu dem eine medikamentöse Behandlung indiziert ist.

Abstract

Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis. Through regulation of haemodynamics, haematopoesis and the immune system, endocrinology and reparative processes, inhibition of VEGF can cause multiple adverse events. Previous data suggest that – even after intravitreal injection – systemic exposure might occur, thus bearing the risk of manifestation of side effects. Experience with intravenous administration of the antibody bevacizumab (Avastin®) pointed to the potential consequences of a pan-VEGF blockade. The change of haemodynamic parameters implies a potential influence on the patient’s morbidity. Studies already conducted during the approval process do not provide sufficient statistical power when evaluating whether systemic events significantly differ between the treatment and control groups. Retinal perfusion showed an altered vascular tone (change in vessel diameter) following anti-VEGF treatment. Physiological fenestration of the choroicapillaris is significantly reduced. Possible effects on the local oxygen supply in ischaemic tissue have to be considered. In contrast to destructive treatment modalities (laser, cryo), VEGF inhibitors promise the prompt and efficient response of retinal neovascularisation and the preservation of a better function (visual fields). The maturation of growing vessels (pericytes) and the secondary formation of membranes are limiting factors with regard to the time-point at which anti-VEGF therapy is most effective. A diligent use of the available drugs has to take into account which types of exudative retinopathy are showing no or only very limited response to the treatment.

Literatur

  • 1 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 2 Senger D R, Galli S J, Dvorak A M. et al . Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.  Science. 1983;  219 983-985
  • 3 Adamis A P, Shima D T, Tolentino M J. et al . Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate.  Arch Ophthalmol. 1996;  114 66-71
  • 4 Ferrara N, Gerber H P, Lecouter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 5 Geitzenauer W, Michels S, Prager F. et al . Early effects of systemic and intravitreal bevacizumab (avastin) therapy for neovascular age-related macular degeneration.  Klin Monatsbl Augenheilkd. 2006;  223 822-827
  • 6 Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression.  Crit Rev Oncol Hematol. 2007;  62 179-213
  • 7 Liu L, Simon M C. Regulation of transcription and translation by hypoxia.  Cancer Biol Ther. 2004;  3 492-497
  • 8 Liu K, Yang Y, Mansbridge J. Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression.  Tissue Eng. 2000;  6 539-554
  • 9 Kucab J E, Dunn S E. Role of IGF-1R in mediating breast cancer invasion and metastasis.  Breast Dis. 2003;  17 41-47
  • 10 Cohen T, Nahari D, Cerem L W. et al . Interleukin 6 induces the expression of vascular endothelial growth factor.  J Biol Chem. 1996;  271 736-741
  • 11 Stocks J, Bradbury D, Corbett L. et al . Cytokines upregulate vascular endothelial growth factor secretion by human airway smooth muscle cells: Role of endogenous prostanoids.  FEBS Lett. 2005;  579 2551-2556
  • 12 Finkenzeller G, Marme D, Weich H A. et al . Platelet-derived growth factor-induced transcription of the vascular endothelial growth factor gene is mediated by protein kinase C.  Cancer Res. 1992;  52 4821-4823
  • 13 Ryuto M, Ono M, Izumi H. et al . Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1.  J Biol Chem. 1996;  271 28 220-28 228
  • 14 Pertovaara L, Kaipainen A, Mustonen T. et al . Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells.  J Biol Chem. 1994;  269 6271-6274
  • 15 Carnesecchi S, Carpentier J L, Foti M. et al . Insulin-induced vascular endothelial growth factor expression is mediated by the NADPH oxidase NOX3.  Exp Cell Res. 2006;  312 3413-3424
  • 16 Hyder S M, Murthy L, Stancel G M. Progestin regulation of vascular endothelial growth factor in human breast cancer cells.  Cancer Res. 1998;  58 392-395
  • 17 Haggstrom S, Lissbrant I F, Bergh A. et al . Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats.  J Urol. 1999;  161 1620-1625
  • 18 Wang J, Luo F, Lu J J. et al . VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors.  Int J Cancer. 2002;  97 163-167
  • 19 Shi B M, Wang X Y, Mu Q L. et al . Expressions of vascular endothelial growth factor in cirrhotic tissues and their relations to proto-oncogene c-fos, c-myc.  Hepatobiliary Pancreat Dis Int. 2002;  1 388-391
  • 20 Rak J, Mitsuhashi Y, Bayko L. et al . Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis.  Cancer Res. 1995;  55 4575-45 780
  • 21 Ravi R, Mookerjee B, Bhujwalla Z M. et al . Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha.  Genes Dev. 2000;  14 34-44
  • 22 Bautz F, Rafii S, Kanz L. et al . Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment.  Exp Hematol. 2000;  28 700-706
  • 23 Tolosa L, Mir M, Asensio V J. et al . Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase.  J Neurochem. 2008;  105 1080-1090
  • 24 Boer K, Troost D, Spliet W G. et al . Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB.  Acta Neuropathol. 2008;  E-Pub
  • 25 Nakamura K, Zen Y, Sato Y. et al . Vascular endothelial growth factor, its receptor Flk-1, and hypoxia inducible factor-1alpha are involved in malignant transformation in dysplastic nodules of the liver.  Hum Pathol. 2007;  38 1532-1546
  • 26 Compernolle V, Brusselmans K, Acker T. et al . Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice.  Nat Med. 2002;  8 702-710
  • 27 Barleon B, Sozzani S, Zhou D. et al . Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1.  Blood. 1996;  87 3336-3343
  • 28 Clauss M, Weich H, Breier G. et al . The vascular endothelial growth factor receptor Flt-1 mediates biological activitiesüüImplications for a functional role of placenta growth factor in monocyte activation and chemotaxis.  J Biol Chem. 1996;  271 17 629-17 634
  • 29 Duyndam M C, Hilhorst M C, Schluper H M. et al . Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts.  Am J Pathol. 2002;  160 537-548
  • 30 Norrby K. Mast cells and angiogenesis.  APMIS. 2002;  110 355-371
  • 31 Feistritzer C, Kaneider N C, Sturn D H. et al . Expression and function of the vascular endothelial growth factor receptor FLT-1 in human eosinophils.  Am J Respir Cell Mol Biol. 2004;  30 729-735
  • 32 Paulis de A, Prevete N, Fiorentino I. et al . Expression and functions of the vascular endothelial growth factors and their receptors in human basophils.  J Immunol. 2006;  177 7322-7331
  • 33 Casella I, Feccia T, Chelucci C. et al . Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor.  Blood. 2003;  101 1316-1323
  • 34 Gerber H P, Malik A K, Solar G P. et al . VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism.  Nature. 2002;  417 954-958
  • 35 Tombran-Tink J, Barnstable C J. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone.  Biochem Biophys Res Commun. 2004;  316 573-579
  • 36 Shui Y B, Wang X, Hu J S. et al . Vascular endothelial growth factor expression and signaling in the lens.  Invest Ophthalmol Vis Sci. 2003;  44 3911-9
  • 37 Yoeruek E, Spitzer M S, Tatar O. et al . Safety profile of bevacizumab on cultured human corneal cells.  Cornea. 2007;  26 977-982
  • 38 Yang X, Cepko C L. Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells.  J Neurosci. 1996;  16 6089-6099
  • 39 Ablonczy Z, Crosson C E. VEGF modulation of retinal pigment epithelium resistance.  Exp Eye Res. 2007;  85 762-771
  • 40 Saint-Geniez M, Maldonado A E, D’Amore P A. VEGF expression and receptor activation in the choroid during development and in the adult.  Invest Ophthalmol Vis Sci. 2006;  47 3135-3142
  • 41 Smith C P, Steinle J J. Changes in growth factor expression in normal aging of the rat retina.  Exp Eye Res. 2007;  85 817-824
  • 42 Boyd S R, Tan D, Bunce C. et al . Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window.  Br J Ophthalmol. 2002;  86 448-452
  • 43 Gille J. Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches.  Exp Dermatol. 2006;  15 175-186
  • 44 Bates D O. The chronic effect of vascular endothelial growth factor on individually perfused frog mesenteric microvessels.  J Physiol. 1998;  513 (Pt 1) 225-233
  • 45 Nagy J A, Benjamin L, Zeng H. et al . Vascular permeability, vascular hyperpermeability and angiogenesis.  Angiogenesis. 2008;  E-Pub
  • 46 Grove C S, Lee Y C. Vascular endothelial growth factor: the key mediator in pleural effusion formation.  Curr Opin Pulm Med. 2002;  8 294-301
  • 47 Völcker M, Peters S, Inhoffen W. et al . Early antiexudative response – OCT monitoring after intravitreal bevacizumab injection].  Ophthalmologe. 2006;  103 476-483
  • 48 Spitzer M S, Ziemssen F, Yoeruek E. et al . Efficacy of intravitreal bevacizumab in treating postoperative pseudophakic cystoid macular edema.  J Cataract Refract Surg. 2008;  34 70-75
  • 49 Ziemssen F, Deuter C M, Stuebiger N. et al . Weak transient response of chronic uveitic macular edema to intravitreal bevacizumab (Avastin).  Graefes Arch Clin Exp Ophthalmol. 2007;  245 917-918
  • 50 Angelo L S, Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators.  Clin Cancer Res. 2007;  13 2825-2830
  • 51 Clauss M, Gerlach M, Gerlach H. et al . Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration.  J Exp Med. 1990;  172 1535-1545
  • 52 Min J K, Lee Y M, Kim J H. et al . Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway.  Circ Res. 2005;  96 300-307
  • 53 Yoo S A, Bae D G, Ryoo J W. et al . Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes.  J Immunol. 2005;  174 5846-5855
  • 54 Hattori K, Dias S, Heissig B. et al . Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells.  J Exp Med. 2001;  193 1005-1014
  • 55 Reinders M E, Sho M, Izawa A. et al . Proinflammatory functions of vascular endothelial growth factor in alloimmunity.  J Clin Invest. 2003;  112 1655-1665
  • 56 Mor F, Quintana F J, Cohen I R. Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization.  J Immunol. 2004;  172 4618-4623
  • 57 Proescholdt M A, Jacobson S, Tresser N. et al . Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats.  J Neuropathol Exp Neurol. 2002;  61 914-925
  • 58 Watanabe H, Mamelak A J, Wang B. et al . Anti-vascular endothelial growth factor receptor-2 (Flk-1 /KDR) antibody suppresses contact hypersensitivity.  Exp Dermatol. 2004;  13 671-681
  • 59 Halin C, Tobler N E, Vigl B. et al . VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes.  Blood. 2007;  110 3158-3167
  • 60 Bock F, Onderka J, Dietrich T. et al . Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis.  Invest Ophthalmol Vis Sci. 2007;  48 2545-2552
  • 61 Ziemssen F, Warga M, Neuhann I M. et al . Does intravitreal injection of bevacizumab have an effect on the blood-aqueus barrier function?.  Br J Ophthalmol. 2006;  90 922
  • 62 Pepper M S. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis.  Arterioscler Thromb Vasc Biol. 2001;  21 1104-1117
  • 63 Behzadian M A, Windsor L J, Ghaly N. et al . VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor.  FASEB J. 2003;  17 752-754
  • 64 Lee K S, Park S J, Kim S R. et al . Inhibition of VEGF blocks TGF-{beta}1 production through a PI 3K/Akt signalling pathway.  Eur Respir J. 2008;  31 523-531
  • 65 Wynn T A. Cellular and molecular mechanisms of fibrosis.  J Pathol. 2008;  214 199-210
  • 66 Friedlander M. Fibrosis and diseases of the eye.  J Clin Invest. 2007;  117 576-586
  • 67 Jonas J B, Spandau U H, Schlichtenbrede F. Intravitreal bevacizumab for filtering surgery.  Ophthalmic Res. 2007;  39 121-122
  • 68 Yoeruek E, Ziemssen F, Henke-Fahle S. et al . Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn.  Acta Ophthalmol Scand. 2007;  E-Pub
  • 69 Hsieh M Y, Chen W Y, Jiang M J. et al . Interleukin-20 promotes angiogenesis in a direct and indirect manner.  Genes Immun. 2006;  7 234-242
  • 70 Hartlapp I, Abe R, Saeed R W. et al . Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo.  FASEB J. 2001;  15 2215-2224
  • 71 Scappaticci F A, Fehrenbacher L, Cartwright T. et al . Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab.  J Surg Oncol. 2005;  91 173-180
  • 72 Ko J, Ross J, Awad H. et al . The effects of ZD 6474, an inhibitor of VEGF signaling, on cutaneous wound healing in mice.  J Surg Res. 2005;  129 251-259
  • 73 Street J, Bao M, deGuzman L. et al . Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.  Proc Natl Acad Sci U S A. 2002;  99 9656-9661
  • 74 Mac G F, Ji J W, Popel A S. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle.  J Appl Physiol. 2007;  102 722-734
  • 75 Wei W, Chen Z W, Yang Q. et al . Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery.  Vascul Pharmacol. 2007;  46 253-259
  • 76 Yang R, Thomas G R, Bunting S. et al . Effects of vascular endothelial growth factor on hemodynamics and cardiac performance.  J Cardiovasc Pharmacol. 1996;  27 838-844
  • 77 Lin M I, Sessa W C. Vascular endothelial growth factor signaling to endothelial nitric oxide synthase: more than a FLeeTing moment.  Circ Res. 2006;  99 666-668
  • 78 Genentech Inc .Avastin™ (bevacizumab) for intravenous use [Package insert]. South San Francisco CA; 2004
  • 79 Kabbinavar F, Hurwitz H I, Fehrenbacher L. et al . Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer.  J Clin Oncol. 2003;  21 60-65
  • 80 Zhu X, Shenhong W, Dahut W L. et al . Risks of Proteinuria and Hypertension with Bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis.  Am J Kidney Dis. 2007;  49 186-193
  • 81 Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential.  Neurosignals. 2005;  14 207-221
  • 82 Kilic U, Kilic E, Jarve A. et al . Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1 / 2 and Akt pathways.  J Neurosci. 2006;  26 12 439-12 446
  • 83 Schiera G, Proia P, Alberti C. et al . Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles.  J Cell Mol Med. 2007;  11 1384-1394
  • 84 Schanzer A, Wachs F P, Wilhelm D. et al . Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor.  Brain Pathol. 2004;  14 237-248
  • 85 Famiglietti E V, Stopa E G, McGookin E D. et al . Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina.  Brain Res. 2003;  969 195-204
  • 86 Nishijima K, Ng Y S, Zhong L. et al . Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury.  Am J Pathol. 2007;  171 53-67
  • 87 Eremina V, Cui S, Gerber H. et al . Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival.  J Am Soc Nephrol. 2006;  17 724-735
  • 88 Kasahara Y, Tuder R M, Taraseviciene-Stewart L. et al . Inhibition of VEGF receptors causes lung cell apoptosis and emphysema.  J Clin Invest. 2000;  106 1311-1319
  • 89 Tuder R M, Zhen L, Cho C Y. et al . Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade.  Am J Respir Cell Mol Biol. 2003;  29 88-97
  • 90 Advani A, Kelly D J, Advani S L. et al . Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions.  Proc Natl Acad Sci U S A. 2007;  104 14 448-14 453
  • 91 Ostendorf T, Kunter U, Eitner F. et al . VEGF(165) mediates glomerular endothelial repair.  J Clin Invest. 1999;  104 913-923
  • 92 Eremina V, Jefferson J A, Kowalewska J. et al . VEGF inhibition and renal thrombotic microangiopathy.  N Engl J Med. 2008;  358 1129-136
  • 93 Wang J F, Milosveski V, Schramek C. et al . Presence and possible role of vascular endothelial growth factor in thyroid cell growth and function.  J Endocrinol. 1998;  157 5-12
  • 94 Lammert E, Gu G, McLaughlin M. et al . Role of VEGF-A in vascularization of pancreatic islets.  Curr Biol. 2003;  13 1070-1074
  • 95 Kamba T, Tam B Y, Hashizume H. et al . VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature.  Am J Physiol Heart Circ Physiol. 2006;  290 H560-H576
  • 96 Inoue M, Hager J H, Ferrara N. et al . VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis.  Cancer Cell. 2002;  1 193-202
  • 97 Maharaj A S, Walshe T E, Saint-Geniez M. et al . VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma.  J Exp Med. 2008;  205 491-501
  • 98 Gerber H P, Hillan K J, Ryan A M. et al . VEGF is required for growth and survival in neonatal mice.  Development. 1999;  126 1149-1159
  • 99 Hetland M L, Christensen I J, Lottenburger T. et al . Circulating VEGF as a biological marker in patients with rheumatoid arthritis? Preanalytical and biological variability in healthy persons and in patients.  Dis Markers. 2008;  24 1-10
  • 100 Iacobellis G, Cipriani R, Gabriele A. et al . High circulating vascular endothelial growth factor (VEGF) is related to a better systolic function in diabetic hypertensive patients.  Cytokine. 2004;  27 25-30
  • 101 Csaky K G, Gordiyenko N, Rabena M G. et al . Pharmakokinetics of intravitreal bevacizumab in humans.  Invest Ophth Vis Sci. 2007;  48 A4936
  • 102 Heiduschka P, Fietz H, Hofmeister S. et al . Penetration of bevacizumab through the retina after intravitreal injection in the monkey.  Invest Ophthalmol Vis Sci. 2007;  48 2814-2823
  • 103 Avery R L, Pearlman J, Pieramici D J. et al . Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy.  Ophthalmology. 2006;  113 1695-1615
  • 104 Rodrigues E B, Shiroma H, Meyer C H. et al . Metrorrhagia after intravitreal injection of bevacizumab.  Acta Ophthalmol Scand. 2007;  85 915-916
  • 105 Gillies M C, Wong T Y. Ranibizumab for neovascular age-related macular degeneration.  N Engl J Med. 2007;  356 748-749
  • 106 Verheul H M, Lolkema M P, Qian D Z. et al . Platelets take up the monoclonal antibody bevacizumab.  Clin Cancer Res. 2007;  13 5341-5347
  • 107 Ziemssen F, Zhu Q, Peters S. et al . Intensified monitoring of circadian blood pressure and heart rate before and after intravitreous injection of bevacizumab: Preliminary findings of a pilot study.  Int Ophthalmol. 2008;  E-Pub
  • 108 Ziemssen F, Folprecht G, Ziemssen T. Intravitreous bevacizumab and blood pressure: does ‘safe’ mean ‘safe enough’?.  Acta Ophthalmol Scand. 2007;  85 573-574
  • 109 McGimpsey S J, Gillies M C. Treatment of macular degeneration – controversy and hope.  Br J Ophthalmol. 2008;  92 436-437
  • 110 Glusker P, Recht L, Lane B. Reversible posterior leukoencephalopathy syndrome and bevacizumab.  N Engl J Med. 2006;  354 980-982
  • 111 Ziemssen F, Grisanti S, Bartz-Schmidt K U. The international intravitreal bevacizumab safety survey.  Br J Ophthalmol. 2006;  90 1440-1441
  • 112 Kim I, Ryan A M, Rohan R. et al . Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes.  Invest Ophthalmol Vis Sci. 1999;  40 2115-2121
  • 113 Blaauwgeers H G, Holtkamp G M, Rutten H. et al . Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation.  Am J Pathol. 1999;  155 421-428
  • 114 Kaempf S, Johnen S, Salz A K. et al . Effects of Bevacizumab (Avastin) on retinal cells in organotypic culture.  Invest Ophthalmol Vis Sci. 2008;  E-Pub
  • 115 Lüke M, Warga M, Ziemssen F. et al . Effects of bevacizumab on retinal function in isolated vertebrate retina.  Br J Ophthalmol. 2006;  90 1178-1182
  • 116 Peters S, Heiduschka P, Julien S. et al . Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab.  Am J Ophthalmol. 2007;  143 995-1002
  • 117 Inai T, Mancuso M, Hashizume H. et al . Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts.  Am J Pathol. 2004;  165 35-52
  • 118 Mancuso M R, Davis R, Norberg S M. et al . Rapid vascular regrowth in tumors after reversal of VEGF inhibition.  J Clin Invest. 2006;  116 2610-2621
  • 119 Geisen P, Peterson L J, Martiniuk D. et al . Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity.  Mol Vis. 2008;  14 345-357
  • 120 Soliman W, Vinten M, Sander B. et al . Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema.  Acta Ophthalmol Scand. 2007;  E-Pub
  • 121 Baffert F, Le T, Sennino B. et al . Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling.  Am J Physiol Heart Circ Physiol. 2006;  290 H547-H559
  • 122 Fung A E, Rosenfeld P J, Reichel E. The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide.  Br J Ophthalmol. 2006;  90 1344-1349
  • 123 Wu L, Martinez-Castellanos M A, Quiroz-Mercado H. et al . Twelve-month safety of intravitreal injections of bevacizumab (Avastin®): results of the Pan-American Collaborative Retina Study Group (PACORES).  Graefes Arch Clin Exp Ophthalmol. 2008;  246 81-87
  • 124 Shima C, Sakaguchi H, Gomi F. et al . Complications in patients after intravitreal injection of bevacizumab.  Acta Ophthalmol Scand. 2007;  E-Pub
  • 125 Helotera H, Alitalo K. The VEGF family, the inside story.  Cell. 2007;  130 591-592
  • 126 Gruchala M, Roy H, Bhardwaj S. et al . Gene therapy for cardiovascular diseases.  Curr Pharm Des. 2004;  10 407-423
  • 127 Lambrechts D, Storkebaum E, Morimoto M. et al . VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death.  Nat Genet. 2003;  34 383-394
  • 128 Nicoletti J N, Shah S K, McCloskey D P. et al . Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus.  Neuroscience. 2008;  151 232-241
  • 129 Karkkainen M J, Saaristo A, Jussila L. et al . A model for gene therapy of human hereditary lymphedema.  Proc Natl Acad Sci U S A. 2001;  98 12 677-12 682
  • 130 Maynard S E, Min J Y, Merchan J. et al . Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.  J Clin Invest. 2003;  111 649-658
  • 131 Celletti F L, Waugh J M, Amabile P G. et al . Vascular endothelial growth factor enhances atherosclerotic plaque progression.  Nat Med. 2001;  7 425-429
  • 132 Detmar M, Brown L F, Claffey K P. et al . Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis.  J Exp Med. 1994;  180 1141-1146
  • 133 Yano K, Liaw P C, Mullington J M. et al . Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality.  J Exp Med. 2006;  203 1447-1458

Dr. Focke Ziemssen

Eberhard-Karl-Universität Tübingen, Department für Augenheilkunde

Schleichstr. 12

72076 Tübingen

Telefon: ++ 49/70 71/2 98 47 61

Fax: ++ 49/70 71/29 52 15

eMail: Focke.Ziemssen@med.uni-tuebingen.de

    >