Pharmacopsychiatry 2007; 40(6): 275-286
DOI: 10.1055/s-2007-990291
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Course of Recovery of Cognitive Impairment in Patients with Schizophrenia: A Randomised Double-blind Study Comparing Sertindole and Haloperidol

B. Gallhofer 1 , P. Jaanson 2 , A. Mittoux 3 , P. Tanghøj 3 , S. Lis 1 , S. Krieger 1
  • 1Cognitive Neuroscience Laboratory and Department of Psychiatry, Centre for Psychiatry, Justus-Liebig University, Giessen, Germany
  • 2Psychiatric Clinic, Department of Psychiatry, University of Tartu, Tartu, Estonia
  • 3H. Lundbeck A/S, Ottiliavej 9, Valby, Copenhagen, Denmark
Further Information

Publication History

received 12.02.2007 revised 17.08.2007

accepted 24.08.2007

Publication Date:
21 November 2007 (online)

Abstract

Objective: To compare the impact of sertindole and haloperidol on cognitive function in patients suffering from schizophrenia.

Methods: In a 12 week trial, of the 40 patients randomised to treatment, 34 (17 sertindole and 17 haloperidol) were included in the analysis set. Cognitive sub-processes were investigated with the Reaction Time Decomposition (RTD) method and the Wisconsin Card Sorting Test (WCST), at baseline, Week 4 and Week 12.

Results: In executive function, i.e. set shifting tasks, sertindole reversed cognitive deficits significantly more than haloperidol. It was demonstrated that this atypical drug improved cognitive processing independently of motor function. Patients receiving sertindole markedly improved on the RTD task at Week 4 and continued to improve (although at a slower rate) at Week 12, those patients receiving haloperidol showed marked impairment at Week 4 with partial recovery by Week 12.

Conclusion: The study demonstrated two distinct processes of action on cognition between sertindole and haloperidol and the marked beneficial effects of sertindole, particularly in parameters that are regarded as schizophrenia-related cognitive disturbances.

References

  • 1 Andreasen N, Paradiso S, O'Leary D. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry?.  Schizophr Bull. 1998;  24 203-218
  • 2 Arbib M. Levels of modelling of mechanisms of visually guided behavior.  Behav Brain Sciences. 1987;  10 407-436
  • 3 Arbib M. The metaphorical brain 2. Wiley, New York 1989
  • 4 Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence.  Neuropsychophramacology. 1998;  18 63-101
  • 5 Baddeley A. Working memory. Oxford University Press, Oxford 1986
  • 6 Baldessarini R, Frankenburg F. Clozapine: a novel antipsychotic drug.  N Engl J Med. 1991;  324 746-754
  • 7 Berman K, Ostrem J, Randolph C, Gold J, Goldberg T, Coppola R. et al . Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study.  Neuropsychologia. 1995;  33 1027-1046
  • 8 Brekke J, Kay D, Lee K, Green M. Biosocial pathways to functional outcome in schizophrenia.  Schizophr Res. 2005;  80 213-225
  • 9 Callicott J, Ramsey N, Tallent K, Bertolino A, Knable M, Coppola R. et al . Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia.  Neuropsychopharmacology. 1998;  18 186-196
  • 10 Callicott J, Bertolino A, Mattay V, Langheim F, Duyn J, Coppola R. et al . Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited.  Cerebral Cortex. 2000;  10 1078-1092
  • 11 Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia.  Am J Psychiatry. 1978;  135 165-173
  • 12 Carlsson A. Speculations on the control of mental and motor functions by dopamine-modulated cortico-striato-thalamo-cortical feedback loops.  Mt Sinai J Med. 1988;  55 6-10
  • 13 Carlsson A. The Neurochemical Circuitry.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S10-S14
  • 14 Carter C, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen J. Functional hypofrontality and working memory dysfunction in schizophrenia.  Am J Psychiatry. 1998;  155 1285-1287
  • 15 Cohen J, Braver T, Brown J. Computational perspectives on dopamine function in prefrontal cortex.  Curr Opin Neurobiol. 2002;  12 223-229
  • 16 Collaborative Working Group on Clinical Trial Evaluations . Adverse effects of the atypical antipsychotics.  J. Clin Psychiatry. 1998;  59 17-22
  • 17 Dawson L, Nguyen H, Li P. The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus.  Neuropsychopharmacology. 2001;  25 662-668
  • 18 Farde L, Nordstrom A, Wiesel F, Pauli S, Halldin C, Sedvall G. Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects.  Arch Gen Psychiatry. 1992;  49 538-544
  • 19 Frith C, Done D. Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action.  Psychol. Med. 1989;  19 359-363
  • 20 Gallhofer B, Bauer U, Lis S, Krieger S, Gruppe H. Cognitive dysfunction in schizophrenia: comparison of treatment with atypical antipsychotic agents and conventional neuroleptic drugs.  Eur. Neuropsychopharmacol. 1996;  6 S13-S20
  • 21 Gardner D, Baldessarini R, Waraich P. Modern antipsychotic drugs: a critical overview.  CMAJ. 2005;  172 1703-1711
  • 22 Goldberg T, Greenberg R, Griffin S, Gold J, Kleinman J, Pickar D. The effect of clozapine on cognition and psychiatric symptoms in patients with schizophrenia.  Br J Psychiatry. 1993;  162 43-48
  • 23 Green M, Satz P, Ganzell S, Vaclav J. Wisconsin card sorting test performance in schizophrenia: remediation of a stubborn deficit.  Am J Psychiatry. 1992;  149 62-67
  • 24 Hatcher P, Brown V, Tait D, Bate S, Overend P, Hagan J, Jones D. 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats.  Psychopharmacology. 2005;  181 253-259
  • 25 Heaton RK, Chelune GJ, Taley JL, Kay GG, Curtiss G. Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources 1993
  • 26 Hirst W, Stean T, Rogers D, Sunter D, Pugh P, Moss S. et al . SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models.  Eur J Pharmacol. 2006;  553 109-119
  • 27 Hofer A, Rettenbacher M, Edlinger M, Huber R, Bodner T, Kemmler G, Sachs G, Fleischhacker W. Outcomes in schizophrenia outpatients treated with amisulpride or olanzapine.  Pharmacopsychiatry. 2007;  40 1-8
  • 28 ICH Harmonised Tripartite Guideline . Guideline for Good Clinical Practice.  1996;  http://ich www.ich.org/MediaServer.jser?@_ID=482&@_MODE=GLB
  • 29 Joel D, Weiner I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated.  Neuroscience. 1994;  63 363-379
  • 30 Kane J, Tamminga C. Sertindole (Serdolect): preclinical and clinical findings of a new atypical antipsychotic.  Expert Opin Investig Drugs. 1997;  6 1729-1741
  • 31 Kapur S, Seeman S. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics. A new hypothesis.  Am J Psychiatry. 2001;  158 360-369
  • 32 Kay S, Fiszbein A, Opler L. The positive and negative syndrome scale (PANSS) for schizophrenia.  Schizophr Bull. 1987;  13 261-276
  • 33 Konradi C, Heckers S. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia.  Biol. Psychiatry. 2001;  50 729-742
  • 34 Krieger S, Lis S, Gallhofer B. Cognitive subprocesses and schizophrenia. A Reaction-time decomposition.  Acta. Psychiatr. Scand. Suppl. 2001;  408 18-27
  • 35 Krieger S, Lis S, Janik H, Cetin T, Gallhofer B, Meyer-Lindenberg A. Executive function and cognitive subprocesses in first-episode, drug-naive schizophrenia: an analysis of N-back performance.  Am J Psychiatry. 2005;  162 1206-1208
  • 36 Lacroix L, Dawson L, Hagan J, Heidbreder C. 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex.  Synapse. 2004;  51 158-164
  • 37 Leucht S, Lasser R. The concepts of remission and recovery in schizophrenia.  Pharmacopsychiatry. 2006;  39 161-170
  • 38 Lewis D, Lieberman J. Catching up on schizophrenia. Natural history and neurobiology.  Neuron. 2000;  28 325-334
  • 39 Liegeois J, Ichikawa J, Meltzer H. 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner.  Brain Res. 2002;  947 157-165
  • 40 Lublin H. Cognitive dysfunction in schizophrenia.  Editorial. Acta. Psychiatr Scand Suppl. 2001;  408 5-9
  • 41 Mallinckrodt C, Clark W, David S. Accounting for drop out bias using mixed-effects models.  Journal of Biopharmaceutical Statistics. 2001a;  11 9-21
  • 42 Mallinckrodt C, Clark W, David S. Type I error rates from mixed-effects model repeated measures compared with fixed-effects ANOVA with missing values imputed via LOCF.  Drug Information Journal. 2001b;  35 1215-1225
  • 43 Manoach D. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings.  Schizophr Res. 2003;  60 285-298
  • 44 Mattay V, Fera F, Tessitore A, Hariri A, Berman K, Das S. Neurophysiological correlates of age-related changes in working memory capacity.  Neurosc Lett. 2006;  392 32-37
  • 45 Meyer-Lindenberg A, Gruppe H, Bauer U, Lis S, Krieger S, Gallhofer B. Improvement of cognitive function in schizophrenic patients receiving clozapine or zotepine: results from a double-blind study.  Pharmacopsychiatry. 1997;  30 35-42
  • 46 Meyer-Lindenberg A, Poline J-P, Kohn P, Holt J, Egan M, Weinberger D. et al . Evidence for abnormal cortical functional connectivity during working memory in schizophrenia.  Am J Psychiatry. 2001;  158 1809-1817
  • 47 Mojtabai R, Bromet E, Harvey P, Carlson G, Craig T, Fennig S. Neuropsychological differences between first-admission schizophrenia and psychotic affective disorders.  Am J Psychiatry. 2000;  157 1453-1460
  • 48 Mungas D, Magliozzi J, Laubly J, Blunden D. Effects of haloperidol on recall and information processing in verbal and spatial learning.  Prog Neuropsychopharmacol. Biol Psychiatry. 1990;  14 181-193
  • 49 Nordström A, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients.  Am J Psychiatry. 1995;  152 1444-1449
  • 50 Nuechterlein K. Reaction time and attention in schizophrenia: a critical evaluation of the data and theories.  Schizophr Bull. 1977;  3 373-428
  • 51 Nuechterlein K, Dawson M. Information processing and attentional functioning in the developmental course of schizophrenic disorders.  Schizophr Bull. 1984;  10 160-203
  • 52 Nyberg S, Nordstrom A, Halldin C, Farde L. Positron emission tomography studies on D2 dopamine receptor occupancy and plasma antipsychotic drug levels in man.  In Clin Psychopharmacol. 1995;  10 81-85
  • 53 Nyberg S, Olsson H, Nilsson U, Maehlum E, Halldin C, Farde L. Low striatal and extra-striatal D2 receptor occupancy during treatment with the atypical antipsychotic sertindole.  Psychopharmacology. 2002;  162 37-41
  • 54 O'Reilly R, Noelle D, Braver T, Cohen J. Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control.  Cerebral Cortex. 2002;  12 246-257
  • 55 Ortuño F, Moreno-Íñiguez M, Millán M, Soutullo C, Bonelli R. Cortical blood flow during rest and Wisconsin Card Sorting Test performance in schizophrenia.  Wien Med Wochenschr. 2006;  156 179-184
  • 56 Peled A. From plasticity to complexity: a new diagnostic method for psychiatry.  Med Hypotheses. 2004;  63 110-114
  • 57 Perlstein W, Dixit N, Carter C, Noll D, Cohen J. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia.  Biol Psychiatry. 2003;  53 25-38
  • 58 Posner M, Petersen S, Fox P, Raichle M. Localization of cognitive operations in the human brain.  Science. 1988;  240 1627-1631
  • 59 Rodefer J, Murphy E, Baxter M. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats.  Eur J Neurosci. 2005;  21 1070-1076
  • 60 Rodefer J. The effects of antipsychotics on reversing PCP-induced deficits in a rodent attentional set-shifting task.  Schizophr Res. 2006;  81 130
  • 61 Rodefer J, Nguyen T, Arnt J. The effects of antipsychotics on cognitive deficits produced by subchronic PCP administration in a rodent attentional ED/ID set-shifting task.  Int J Neuropsychopharmacol. 2006;  9 S140
  • 62 Schatz J. Cognitive processing efficiency in schizophrenia: generalized versus domain specific deficits.  Schizophr Res. 1998;  30 41-49
  • 63 Schmidt C, Fadayel G. The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat.  Eur J Pharmacol. 1995;  6 273-279
  • 64 Schmitt A, May B, Muller B, Zink M, Braus D, Henn F. Effect of antipsychotics on glutaminergic neural transmission in the animal model.  Nervenarzt. 2004;  75 16-22
  • 65 Simpson G, Angus J. A rating scale for extrapyramidal side effects.  Acta Psychiatr Scand Suppl. 1970;  212 11-19
  • 66 Spohn H, Strauss M. Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia.  J Abnorm. Psychol. 1989;  98 367-380
  • 67 Wang X. Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.  Pharmacopsychiatry. 2006;  39 S80-S87
  • 68 Weinberger D, Gallhofer B. Cognitive function in schizophrenia.  Int Clin Psychopharmacol. 1997;  12 S29-S36
  • 69 Weiser M, Shneider-Beeri M, Nakash N, Brill N, Bawnik O, Reiss S. et al . Improvement in cognition associated with novel antipsychotic drugs: a direct drug effect or reduction of EPS?.  Schizophr Res. 2000;  46 81-89
  • 70 Weiss E, Bilder R, Fleischhacker W. The effects of second-generation antipsychotics on cognitive functioning and psychosocial outcome in schizophrenia.  Psychopharmacology. 2002;  162 11-17
  • 71 Woolley ML, Marsden C, Fone K. 5-HT(6) receptors Current Drug Targets.  CNS and Neurological Disorders. 2004;  3 59-79
  • 72 World Medical Association Declaration of Helsinki . Ethical principles for medical research involving human subjects.  The World Medical Association (WMA). 2004;  http://www.wma.net/e/policy/b3.html
  • 73 Zimbroff D, Kane J, Tamminga C, Daniel D, Mack R, Wozniak P. et al . Controlled, dose-response study of sertindole and haloperidol in the treatment of schizophrenia.  Am. J. Psychiatry. 1997;  154 782-791

Correspondence

B. Gallhofer

Cognitive Neuroscience

Laboratory

Centre for Psychiatry

Justus-Liebig University

Am Steg 22

35385 Giessen

Germany

Phone: +49/641/994 57 01

Fax: +49/641/994 57 09

Email: Bernd.Gallhofer@psychiat.med.uni-giessen.de

    >