Int J Sports Med 2008; 29(9): 706-712
DOI: 10.1055/s-2007-989454
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Prediction of Glucose Oxidation Rate during Exercise

M. P. Francescato1 , M. Zanier1 , F. Gaggioli1
  • 1Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy
Further Information

Publication History

accepted after revision December 5, 2007

Publication Date:
22 January 2008 (online)

Abstract

Recently, the relationship between percentage maximal heart rate vs. glucose oxidation rate has been proposed as a tool for estimating glucose oxidation rate during exercise in insulin-dependent diabetic patients. The reliability of this relationship and its applicability to long-term exercise is evaluated. Eight healthy volunteers performed a graded cycloergometric exercise (10-min steps at 30, 50, 70, 90 % of ventilatory threshold). Heart rate and glucose oxidation rate (by indirect calorimetry) were measured during the last 5 min of each step. Volunteers underwent then three 1-hour constant intensity rides at 40, 60, 80 % of ventilatory threshold. Heart rate was recorded continuously; glucose oxidation rate was determined over 15-min periods. The percentage maximal heart rate vs. glucose oxidation rate relationship obtained from the graded exercise matched that previously reported. Independently of intensity, glucose oxidation rates observed during the 1-hr rides were linearly related to the estimated ones (R2 > 0.96, p < 0.001), being, however, progressively over-estimated in subsequent exercise periods. The proposed correction yields values close to the identity line (y = 1.001 · x; R2 = 0.974, p < 0.001), the difference between observed and “corrected” values amounting to 0.23 ± 2.17 mg · min−1 · kg−1. In conclusion, glucose oxidation rate can be estimated from heart rate, once proper correction factors are applied for long duration exercises.

References

  • 1 Achten J, Jeukendrup A E. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation.  J Sports Sci. 2003;  21 1017-1024
  • 2 Achten J, Jeukendrup A E. Heart rate monitoring. Applications and limitations.  Sports Med. 2003;  33 517-538
  • 3 ADA . Physical activity/exercise and diabetes.  Diabetes Care. 2004;  27 S58-S62
  • 4 Ahmaidi S, Hardy J M, Varray A, Collomp K, Mercier J, Préfaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes.  Eur J Appl Physiol. 1993;  66 31-36
  • 5 Ashley C, Kramer M, Bishop P. Estrogen and substrate metabolism: a review of contradictory research.  Sports Med. 2000;  29 221-227
  • 6 Astrand P O, Rodahl K, Dahl H A, Stromme S B. Textbook of Work Physiology. Physiological Bases of Exercise. McGraw Hill Series in Health Education, Physical Education and Recreation. 4th edn. Windsor (Canada); Human Kinetics 2003
  • 7 Bergman B C, Brooks G A. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men.  J Appl Physiol. 1999;  86 479-487
  • 8 Bishop P. Evaluation of the Accusport® lactate analyser.  Int J Sports Med. 2001;  22 525-530
  • 9 Brooke J D, Hamley E J, Thomason H. Variability of the measurement of exercise heart rate.  J Sports Med Phys Fitness. 1970;  10 21-25
  • 10 Brooks G A, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept.  J Appl Physiol. 1994;  76 2253-2261
  • 11 Caron A, Lavoie C, Péronnet F, Hillaire-Marcel C, Massicotte D. Oxidation of [13C]glucose ingested before and/or during prolonged exercise.  Eur J Appl Physiol. 2004;  91 217-223
  • 12 Carter S L, Rennie C, Tarnopolsky M A. Substrate utilization during endurance exercise in men and women after endurance training.  Am J Physiol. 2001;  280 E898-E907
  • 13 Coyle E F, Coggan A R, Hemmert M L, Ivy J L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate.  J Appl Physiol. 1986;  61 165-172
  • 14 di Prampero P E. Energetics of Muscular Exercise.  Rev Physiol Biochem Pharmacol. 1981;  89 143-222
  • 15 Francescato M P, Cattin L, Geat M, Tosoratti E, Lazzer S, Noacco C, di Prampero P E. The glucose pulse: a simple method to estimate the amount of glucose oxidized during exercise in type 1 diabetic patients.  Diabetes Care. 2005;  28 2028-2030
  • 16 Francescato M P, Geat M, Fusi S, Stupar G, Noacco C, Cattin L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients.  Metabolism. 2004;  53 1126-1130
  • 17 Frayn K N. Calculation of substrate oxidation rates in vivo from gaseous exchange.  J Appl Physiol. 1983;  55 628-634
  • 18 Grimm J J, Ybarra J, Berné C, Muchnick S, Golay A. A new table for prevention of hypoglycaemia during physical activity in type 1 diabetic patients.  Diabetes Metab. 2004;  30 465-470
  • 19 Hausswirth C, Bigard A X, Le Chevalier J M. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise.  Int J Sports Med. 1997;  18 449-453
  • 20 Hilloskorpi H, Fogelholm M G, Laukkanen R, Pasanen M E, Oja P, Mänttäri A T, Natri A. Factors affecting the relation between heart rate and energy expenditure during exercise.  Int J Sports Med. 1999;  20 438-443
  • 21 Hilloskorpi H, Pasanen M E, Fogelholm M G, Laukkanen R, Mänttäri A T. Use of heart rate to predict energy expenditure from low to high activity levels.  Int J Sports Med. 2003;  24 332-336
  • 22 Horowitz J F, Mora-Rodriguez R, Byerley L O, Coyle E F. Substrate metabolism when subjects are fed carbohydrate during exercise.  Am J Physiol. 1999;  276 E828-E835
  • 23 Horton T, Miller E, Glueck D, Tench K. No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise.  Am J Physiol. 2002;  282 E752-E762
  • 24 Horton T, Pagliassotti M J, Hobbs K, Hill J O. Fuel metabolism in men and women during and after long-duration exercise.  J Appl Physiol. 1998;  85 1823-1832
  • 25 Jeukendrup A E. Carbohydrate intake during exercise and performance.  Nutrition. 2004;  20 669-677
  • 26 Jeukendrup A E, Raben A, Gijsen A, Stegen J HCH, Brouns F, Saris W HM, Wagenmakers A JM. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion.  J Physiol. 1999;  515 579-589
  • 27 Jeukendrup A E, Wallis G A. Measurement of substrate oxidation during exercise by means of gas exchange measurements.  Int J Sports Med. 2005;  26 S28-S37
  • 28 Kemmer F W. Prevention of hypoglycemia during exercise in type I diabetes.  Diabetes Care. 1992;  15 1732-1735
  • 29 Keytel L R, Goedecke J H, Noakes T D, Hilloskorpi H, Laukkanen R, van der Merwe L, Lambert E V. Prediction of energy expenditure from heart rate monitoring during submaximal exercise.  J Sports Sci. 2005;  23 289-297
  • 30 Matzinger O, Schneiter P, Tappy L. Effect of fatty acids on exercise plus insulin-induced glucose utilization in trained and sedentary subjects.  Am J Physiol. 2002;  282 E125-E131
  • 31 McArdle W D, Katch F I, Katch V L. Essentials of Exercise Physiology. 2nd ed. Philadelphia, PA; Lippincott Williams & Wilkins 2000
  • 32 McConell G K, Canny B J, Daddo M C, Nance M J, Snow R J. Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise.  J Appl Physiol. 2000;  89 1690-1698
  • 33 Meyer T, Lucia A, Earnest C P, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters – theory and application.  Int J Sports Med. 2005;  26 (Suppl 1) S38-S48
  • 34 Montain S J, Hopper M K, Coggan A R, Coyle E F. Exercise metabolism at different time intervals after a meal.  J Appl Physiol. 1991;  70 882-888
  • 35 Pirnay F, Crielaard J M, Pallikarakis N, Lacroix M, Mosora F, Krzentowski G, Luyckx A S, Lefebvre P J. Fate of exogenous glucose during exercise of different intensities in humans.  J Appl Physiol. 1982;  53 1620-1624
  • 36 Ravussin E, Bogardus C, Scheidegger K, Lagrange B, Horton E D, Horton E S. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans.  J Appl Physiol. 1986;  60 893-900
  • 37 Roepstorff C, Steffensen C, Madsen M, Stallknecht B, Kanstrup I L, Richter E A, Kiens B. Gender differences in substrate utilization during submaximal exercise in endurance trained subjects.  Am J Physiol. 2002;  282 E435-E447
  • 38 Romijn J A, Coyle E F, Hibbert J, Wolfe R R. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise.  Am J Physiol. 1992;  263 E64-E71
  • 39 Romijn J A, Coyle E F, Sidossis L S, Gastaldelli A, Horowitz J F, Endert E, Wolfe R R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration.  Am J Physiol. 1993;  265 E380-E391
  • 40 Romijn J A, Coyle E F, Sidossis L S, Rosenblatt J, Wolfe R R. Substrate metabolism during different exercise intensities in endurance-trained women.  J Appl Physiol. 2000;  88 1707-1714
  • 41 Rowlands D S, Wallis G A, Shaw C, Jentjens R L, Jeukendrup A E. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation.  Med Sci Sport Exerc. 2005;  37 1510-1516
  • 42 Ruby B, Coggan A R, Zderic T. Gender differences in glucose kinetics and substrate oxidation during exercise near the lactate threshold.  J Appl Physiol. 2002;  92 1125-1132
  • 43 Strath S J, Swartz A M, Bassett D R, O'Brien W L, King G A, Ainsworth B E. Evaluation of heart rate as method for assessing moderate intensity physical activity.  Med Sci Sport Exerc. 2000;  32 S465-S470
  • 44 Tarnopolsky L J, MacDougall J D, Atkinson S A, Tarnopolsky M A. Gender differences in substrate for endurance exercise.  J Appl Physiol. 1990;  68 302-308
  • 45 Taylor C. Some properties of maximal and submaximal exercise with reference to physiological variation and the measurement of exercise tolerance.  Am J Physiol. 1944;  142 200-212
  • 46 Utter A C, Kang J, Nieman D C, Dumke C L, Mcanulty S R, Vinci D M, Mcanulty L S. Carbohydrate supplementation and perceived exertion during prolonged running.  Med Sci Sport Exerc. 2004;  36 1036-1041
  • 47 van Loon L JC, Greenhaff P L, Constantin-Teodosiu D, Saris W HM, Wagenmakers A JM. The effects of increasing exercise intensity on muscle fuel utilisation in humans.  J Physiol. 2001;  536 295-304
  • 48 Wallis G A, Dawson R, Achten J, Webber J, Jeukendrup A E. Metabolic response to carbohydrate ingestion during exercise in males and females.  Am J Physiol. 2006;  290 E708-E715
  • 49 Washburn R A, Montoye H J. Reliability of the heart rate response to submaximal upper and lower body exercise.  Res Q Exerc Sports. 1985;  56 166-169
  • 50 Wasserman D H, Zinman B. Exercise in individuals with IDDM (Technical Review).  Diabetes Care. 1994;  19 924-937
  • 51 Zderic T, Coggan A R, Ruby B. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases.  J Appl Physiol. 2001;  90 447-453
  • 52 Zehnder M, Ith M, Kreis R, Saris W HM, Boutellier U, Boesch C. Gender-specific usage of intramyocellular lipids and glycogen during exercise.  Med Sci Sport Exerc. 2005;  37 1517-1524

Dr., MD Maria Pia Francescato

University of Udine
Department of Biomedical Sciences and Technologies

p.le M. Kolbe 4

33100 Udine

Italy

Phone: + 39 04 32 49 43 36

Fax: + 39 04 32 49 43 01

Email: MFrancescato@mail.dstb.uniud.it

    >