Synlett 2007(8): 1177-1189  
DOI: 10.1055/s-2007-973893
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Exploring Chemical Space with Organometallics: Ruthenium Complexes as Protein Kinase Inhibitors

Eric Meggers*, G. Ekin Atilla-Gokcumen, Howard Bregman, Jasna Maksimoska, Seann P. Mulcahy, Nicholas Pagano, Douglas S. Williams
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
Fax: +1(215)7460348; e-Mail: meggers@sas.upenn.edu;
Further Information

Publication History

Received 28 August 2006
Publication Date:
03 April 2007 (online)

Abstract

Complementing organic elements with a metal center provides new opportunities for building three-dimensional structures with unique and defined shapes. Such access to unexplored chemical space may lead to the discovery of molecules with unprecedented properties. Along these lines, this account article describes our successful design of highly potent and selective ruthenium-based inhibitors for the protein kinases GSK-3 and Pim-1 by using the class of indolocarbazole alkaloids as a lead structure. The described ruthenium complexes are kinetically inert scaffolds in which the ruthenium has the function to organize the orientation of the organic ligands in the three-dimensional space.

  • 1 Introduction

  • 1.1 Biologically Relevant Chemical Space

  • 1.2 Organic vs. Organometallic Compounds

  • 1.3 Ruthenium as a Virtual Octahedral Carbon

  • 2 Mimicking the Natural Product Staurosporine with Simple Ruthenium Complexes

  • 3 Synthesis of Cycloruthenated Pyrido[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-diones

  • 4 Discovery of Ruthenium Complexes as Protein Kinase ­Inhibitors

  • 4.1 Octahedral Complexes

  • 4.2 Half-Sandwich Complexes

  • 5 Structures of Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1

  • 6 GSK-3 Inhibition in Mammalian Cells, Frog Embryos, and Zebrafish Embryos

  • 7 Summary and Outlook

    References and Notes

  • See, for example:
  • 1a Schreiber SL. Bioorg. Med. Chem.  1998,  6:  1127 
  • 1b Mayer TU. Trends Cell Biol.  2003,  13:  270 
  • 1c Ding S. Schultz PG. Nature Biotechnol.  2004,  22:  833 
  • For chemical space, see:
  • 2a Burke MD. Schreiber SL. Angew. Chem. Int. Ed.  2004,  43:  46 
  • 2b Dobson CM. Nature (London)  2004,  432:  824 
  • 2c Lipinski C. Hopkins A. Nature (London)  2004,  432:  855 
  • 2d Koch MA. Schuffenhauer A. Scheck M. Wetzel S. Casaulta M. Odermatt A. Ertl P. Waldmann H. Proc. Natl. Acad. Sci. U.S.A.  2005,  102:  17272 
  • For bioorganometallic and medicinal organometallic chemistry, see:
  • 4a Severin K. Bergs R. Beck W. Angew. Chem. Int. Ed.  1998,  37:  1634 
  • 4b Grotjahn DB. Coord. Chem. Rev.  1999,  190-192:  1125 
  • 4c Jaouen G., Ed.; J. Organomet. Chem.  1999,  589:  1 
  • 4d Metzler-Nolte N. Angew. Chem. Int. Ed.  2001,  40:  1040 
  • 4e Fish RH. Jaouen G. Organometallics  2003,  22:  2166 
  • 4f Stodt R. Gencaslan S. Müller IM. Sheldrick WS. Eur. J. Inorg. Chem.  2003,  1873 
  • 4g Schlawe D. Majdalani A. Velcicky J. Heßler E. Wieder T. Prokop A. Schmalz H.-G. Angew. Chem. Int. Ed.  2004,  43:  1731 
  • 4h Van Staveren DR. Metzler-Nolte N. Chem. Rev.  2004,  104:  5931 
  • 4i Ott I. Kircher B. Gust R. J. Inorg. Biochem.  2004,  98:  485 
  • 4j Bioorganometallics   Jaouen G. Wiley-VCH; Weinheim: 2005. 
  • 4k Yan YK. Melchart M. Habtemariam A. Sadler PJ. Chem. Commun.  2005,  4764 
  • 4l Allardyce CS. Dorcier A. Scolaro C. Dyson PJ. Appl. Organomet. Chem.  2005,  19:  1 
  • 4m Dyson PJ. Sava G. Dalton Trans.  2006,  1929 
  • 4n Schatzschneider U. Metzler-Nolte N. Angew. Chem. Int. Ed.  2006,  45:  1504 
  • Some examples of using metals for structural roles in protein binders. See:
  • 5a Lebon F. De Rosny E. Reboud-Ravaux M. Durant F. Eur. J. Med. Chem.  1998,  33:  733 
  • 5b Lebon F. Ledecq M. Benatallah Z. Sicsic S. Lapouyade R. Kahn O. Garcon A. Reboud-Ravaux M. Durant F. J. Chem. Soc., Perkin Trans. 2  1999,  795 
  • 5c Cherrier MV. Martin L. Cavazza C. Jacquamet L. Lemaire D. Gaillard J. Fontecilla-Camps JC. J. Am. Chem. Soc.  2005,  127:  10075 
  • For a strategy of targeting metal complexes to enzyme active sites, see:
  • 6a Wilker JJ. Dmochowski IJ. Dawson JH. Winkler JR. Gray HB. Angew. Chem. Int. Ed.  1999,  38:  90 
  • 6b Dmochowski IJ. Crane BR. Wilker JJ. Winkler JR. Gray HB. Proc. Natl. Acad. Sci. U.S.A.  1999,  96:  12987 
  • 6c Dunn AR. Dmochowski IJ. Winkler JR. Gray HB. J. Am. Chem. Soc.  2003,  125:  12450 
  • 6d Dunn AR. Belliston-Bittner W. Winkler JR. Getzoff ED. Stuehr DJ. Gray HB. J. Am. Chem. Soc.  2005,  127:  5169 
  • 7 Zhang L. Carroll PJ. Meggers E. Org. Lett.  2004,  6:  521 
  • 8 Bregman H. Williams DS. Atilla GE. Carroll PJ. Meggers E. J. Am. Chem. Soc.  2004,  126:  13594 
  • 9 Williams DS. Atilla GE. Bregman H. Arzoumanian A. Klein PS. Meggers E. Angew. Chem. Int. Ed.  2005,  44:  1984 
  • 10 Bregman H. Williams DS. Meggers E. Synthesis  2005,  1521 
  • 11 Debreczeni J. Bullock AN. Atilla GE. Williams DS. Bregman H. Knapp S. Meggers E. Angew. Chem. Int. Ed.  2006,  45:  1580 
  • 12 Bregman H. Carroll PJ. Meggers E. J. Am. Chem. Soc.  2006,  128:  877 
  • 13 Atilla-Gokcumen GE. Williams DS. Bregman H. Pagano N. Meggers E. ChemBioChem  2006,  7:  1443 
  • 14 Hypervalent carbon exists but cannot be exploited for structural chemistry. See for example pentacoordinated carbon in form of highly reactive carbonium ions: Olah GA. Angew. Chem. Int. Ed.  1995,  34:  1393 
  • Nonmetallic elements of the third row or higher can form stable penta- and hexacoordinated geometries. See, for example:
  • 15a Martin JC. Science  1983,  221:  509 
  • 15b Holmes RR. Chem. Rev.  1996,  96:  927 
  • 16 Taube H. Chem. Rev.  1952,  50:  69 
  • 17 The cysteine-containing tripeptide glutathione is present in virtually all mammalian cells at millimolar concentrations: Kaplowitz N. Aw TY. Ookhtens M. Annu. Rev. Pharmacol. Toxicol.  1985,  25:  715 
  • 18 Dwyer FP. Reid IK. Shulman A. Laycock GM. Dixson S. Aust. J. Exp. Biol. Med. Sci.  1969,  47:  203 
  • 19a Dwyer FP. Gyarfas EC. Rogers WP. Koch JH. Nature (London)  1952,  170:  190 
  • 19b Dwyer FP. Gyarfas EC. Wright RD. Shulman A. Nature (London)  1957,  179:  425 
  • 20 For KP1019, see: Hartinger CG. Zorbas-Seifried S. Jakupec MA. Kynast B. Zorbas H. Keppler BK. J. Inorg. Biochem.  2006,  100:  891 
  • 21 For NAMI-A, see: Dyson PJ. Sava G. Dalton Trans.  2006,  16:  1929 
  • For clever synthetic strategies of ruthenium complexes, see for example:
  • 22a Gill TP. Mann KR. Organometallics  1982,  1:  485 
  • 22b Anderson PA. Deacon GB. Haarmann KH. Keene FR. Meyer TJ. Reitsma DA. Skelton BW. Strouse GF. Thomas NC. Treadway JA. White AH. Inorg. Chem.  1995,  34:  6145 
  • For staurosporine, see:
  • 23a Rüegg UT. Burgess GM. Trends Pharm. Sci.  1989,  10:  218 
  • 23b Tamaoki T. Nakano H. Nature Biotechnol.  1990,  8:  732 
  • 23c Omura S. Sasaki Y. Iwai Y. Takeshima H. J. Antibiot.  1995,  48:  535 
  • For indolocarbazole protein kinase inhibitors, see:
  • 24a Kase H. Iwahashi K. Nakanishi S. Matsuda Y. Yamada K. Takahashi M. Murakata C. Sato A. Kaneko M. Biochem. Biophys. Res. Commun.  1987,  142:  436 
  • 24b Martiny-Baron G. Kazanietz MG. Mischak H. Blumberg PM. Kochs G. Hug H. Marme D. Schachtele C. J. Biol. Chem.  1993,  268:  9194 
  • 24c Caravatti G. Meyer T. Fredenhagen A. Trinks U. Mett H. Fabbro D. Bioorg. Med. Chem. Lett.  1994,  4:  399 
  • 24d Prudhomme M. Curr. Pharm. Des.  1997,  3:  265 
  • 24e Jackson JR. Gilmartin A. Imburgia C. Winkler JD. Marshall LA. Roshak A. Cancer Res.  2000,  60:  566 
  • 24f Pindur U. Kim YS. Mehrabani F. Curr. Med. Chem.  1999,  6:  29 
  • 24g Slater MJ. Cockerill S. Baxter R. Bonser RW. Gohil K. Gowrie C. Robinson JE. Littler E. Parry N. Randall R. Snowden W. Bioorg. Med. Chem.  1999,  7:  1067 
  • For co-crystal structures of staurosporine with protein kinases, see for example:
  • 25a Toledo LM. Lydon NB. Structure (London)  1997,  5:  1551 
  • 25b Lawrie AM. Noble MEM. Tunnah P. Brown NR. Johnson LN. Endicott JA. Nature Struct. Biol.  1997,  4:  796 
  • 25c Prade L. Engh RA. Girod A. Kinzel V. Huber R. Bossemeyer D. Structure (London)  1997,  5:  1627 
  • 25d Jacobs MD. Black J. Futer O. Swenson L. Hare B. Fleming M. Saxena K. J. Biol. Chem.  2005,  280:  13728 
  • 26 Huwe A. Mazitschek R. Giannis A. Angew. Chem. Int. Ed.  2003,  42:  2122 
  • A related approach was used to synthesize granulatimides:
  • 27a Yoshida T. Nishiyachi M. Nakashima N. Murase M. Kotani E. Chem. Pharm. Bull.  2002,  50:  872 
  • 27b Yoshida T. Nishiyachi M. Nakashima N. Murase M. Kotani E. Chem. Pharm. Bull.  2003,  51:  209 
  • A related cycloruthenation of 2-pyridylindoles and 2-pyridylpyrroles has been reported. See:
  • 28a Thummel RP. Hedge V. J. Org. Chem.  1989,  54:  1720 
  • 28b Wu F. Chamchoumis CM. Thummel RP. Inorg. Chem.  2000,  39:  584 
  • Crystal structures of organometallic compounds bound to enzymes:
  • 29a Heine A. Stura EA. Yli-Kauhaluoma JT. Gao C. Deng Q. Beno BR. Houk KN. Janda KD. Wilson IA. Science  1998,  279:  1934 
  • 29b Di Gleria K. Nickerson DP. Hill HAO. Wong L.-L. Fülöp V. J. Am. Chem. Soc.  1998,  120:  46 
  • 29c McNae IW. Fishburne K. Habtemariam A. Hunter TM. Melchart M. Wang F. Walkinshaw MD. Sadler PJ. Chem. Commun.  2004,  1786 
  • For attractive interactions between organic fluorine and carbonyl groups, see:
  • 30a Hof F. Scofield DM. Schweizer WB. Diederich F. Angew. Chem. Int. Ed.  2004,  43:  5056 
  • 30b Olsen JA. Banner DW. Seiler P. Wagner B. Tschopp T. Obst-Sander U. Kansy M. Müller K. Diederich F. ChemBioChem  2004,  5:  666 
  • 31 Paulini R. Müller K. Diederich F. Angew. Chem. Int. Ed.  2005,  44:  1788 
  • Wnt signaling:
  • 32a Morin PJ. BioEssays  1999,  21:  1021 
  • 32b Cohen P. Frame S. Nature Rev. Mol. Cell Biol.  2001,  2:  769 
  • 32c Jope RS. Johnson GVW. Trends Biochem. Sci.  2004,  29:  95 
  • 33 Zhang F. Phiel CJ. Spece L. Gurvich N. Klein PS. J. Biol. Chem.  2003,  278:  33067 
  • 34 For kenpaullone, see: Leost M. Schultz C. Link A. Wu Y.-Z. Biernat J. Mandelkow E.-M. Bibb JA. Snyder GL. Greengard P. Zaharevitz DW. Gussio R. Senderowicz AM. Sausville EA. Kunick C. Meijer L. Eur. J. Biochem.  2000,  267:  5983 
  • 35 For BIO, see: Meijer L. Skaltsounis A.-L. Magiatis P. Polychronopoulos P. Knockaert M. Leost M. Ryan XP. Vonica CA. Brivanlou A. Dajani R. Crovace C. Tarricone C. Musacchio A. Roe SM. Pearl L. Greengard P. Chem. Biol.  2003,  10:  1255 
  • Effects of LiCl on the development of Zebrafish embryos:
  • 36a Stachel SE. Grunwald DJ. Myers PZ. Development (Cambridge, UK)  1993,  117:  1261 
  • 36b Driever W. Curr. Opin. Gen. Dev.  1995,  5:  610 
  • 36c Van de Water S. van de Wetering M. Joore J. Esseling J. Bink R. Clevers H. Zivkovic D. Development (Cambridge, UK)  2001,  128:  3877 
  • Effects of LiCl on the development of Xenopus embryos:
  • 37a Busa WB. Gimlich RL. Dev. Biol.  1989,  132:  315 
  • 37b Klein PS. Melton DA. Proc. Natl. Acad. Sci. U.S.A.  1996,  93:  8455 
  • 37c Heasman J. Development (Cambridge, UK)  1997,  124:  4179 
  • For p53-induced apoptosis, see:
  • 38a Levine AJ. Cell  1997,  88:  323 
  • 38b Vousden KH. Lu X. Nature Rev. Cancer  2002,  2:  594 
  • For the role of MDM2 in deactivating p53, see:
  • 39a Momand J. Zambetti GP. Olson DC. George D. Levine AJ. Cell  1992,  69:  1237 
  • 39b Honda R. Tanaka H. Yasuda H. FEBS Lett.  1997,  420:  25 
  • 39c Tovar C. Rosinski J. Filipovic Z. Higgins B. Kolinsky K. Hilton H. Zhao X. Vu BT. Qing W. Packman K. Myklebost O. Heimbrook DC. Vassilev LT. Proc. Natl. Acad. Sci. U.S.A.  2006,  103:  1888 
  • 40a Watcharasit P. Bijur GN. Song L. Zhu J. Chen X. Jope RS. J. Biol. Chem.  2003,  278:  48872 
  • 40b Kulikov R. Boehme KA. Blattner C. Mol. Cell. Biol.  2005,  25:  7170 
  • 41 Pharmacologic modulation of GSK-3β promotes p53-dependent apoptosis in colorectal cancer cells: Tan J. Zhuang L. Leong H.-S. Iyer NG. Liu ET. Yu Q. Cancer Res.  2005,  65:  9012 
  • 42 Hom RK. Chi DY. Katzenellenbogen JA. J. Org. Chem.  1996,  61:  2624 
  • 43 Streu C. Meggers E. Angew. Chem. Int. Ed.  2006,  45:  5645 
3

We are here using a more general definition of the term ‘organometallic’ which includes all metal/organic hybrid compounds without restriction to substances with metal-carbon bonds.