Am J Perinatol 2007; 24(3): 167-181
DOI: 10.1055/s-2007-972927
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Proteomics: A Novel Methodology to Complement Prenatal Diagnosis of Chromosomal Abnormalities and Inherited Human Diseases

Mert Ozan Bahtiyar1 , Joshua A. Copel1 , Maurice J. Mahoney1 , 2 , Irina A. Buhimschi1 , Catalin S. Buhimschi1
  • 1Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
  • 2Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. März 2007 (online)

ABSTRACT

The current revolution in biomedical sciences has raised new hope for early diagnosis, prevention, and treatment of human diseases. Recent advancements in genomics, proteomics, and other basic sciences are currently transforming the medical science, and offer the promise of answering many of the questions related to human diseases, including their early and accurate diagnosis. Profiling of biological fluids (i.e., serum, urine, amniotic fluid, and cerebrospinal fluid) has successfully identified relevant protein biomarkers that potentially can change early diagnosis and treatment of several medical conditions related to human pregnancy. Similarly, proteomics holds the promise to complement genomics to revolutionize screening and prenatal diagnosis of genetic conditions during early pregnancy. This article summarizes current technology and reviews the application of proteomics in diagnosis of genetic disorders during human pregnancy.

REFERENCES

  • 1 Adams M M, Erickson J D, Layde P M, Oakley G P. Down's syndrome: recent trends in the United States.  JAMA. 1981;  246 758-760
  • 2 Egan J F, Kaminsky L M, DeRoche M E, Barsoom M J, Borgida A F, Benn P A. Antenatal Down syndrome screening in the United States in 2001: a survey of maternal-fetal medicine specialists.  Am J Obstet Gynecol. 2002;  187 1230-1234
  • 3 Akesson H O, Forssman H. A study of maternal age in Down's syndrome.  Ann Hum Genet. 1966;  29 271-276
  • 4 Brock D J, Sutcliffe R G. Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida.  Lancet. 1972;  2 197-199
  • 5 Palomaki G E, Knight G J, McCarthy J, Haddow J E, Eckfeldt J H. Maternal serum screening for fetal Down syndrome in the United States: a 1992 survey.  Am J Obstet Gynecol. 1993;  169 1558-1562
  • 6 Haddow J E, Palomaki G E, Knight G J, Cunningham G C, Lustig L S, Boyd P A. Reducing the need for amniocentesis in women 35 years of age or older with serum markers for screening.  N Engl J Med. 1994;  330 1114-1118
  • 7 Haddow J E, Palomaki G E, Knight G J, Foster D L, Neveux L M. Second trimester screening for Down's syndrome using maternal serum dimeric inhibin A.  J Med Screen. 1998;  5 115-119
  • 8 Canick J A, Palomaki G E, Osathanondh R. Prenatal screening for trisomy 18 in the second trimester.  Prenat Diagn. 1990;  10 546-548
  • 9 Saller Jr D N, Canick J A, Blitzer M G et al.. Second-trimester maternal serum analyte levels associated with fetal trisomy 13.  Prenat Diagn. 1999;  19 813-816
  • 10 Williamson R A, Weiner C P, Patil S, Benda J, Varner M W, Abu-Yousef M M. Abnormal pregnancy sonogram: selective indication for fetal karyotype.  Obstet Gynecol. 1987;  69 15-20
  • 11 Bahado-Singh R O, Deren O, Tan A et al.. Ultrasonographically adjusted midtrimester risk of trisomy 21 and significant chromosomal defects in advanced maternal age.  Am J Obstet Gynecol. 1996;  175 1563-1568
  • 12 Goldstein I, Gomez K, Copel J A. Fifth digit measurement in normal pregnancies: a potential sonographic sign of Down's syndrome.  Ultrasound Obstet Gynecol. 1995;  5 34-37
  • 13 Lockwood C J, Lynch L, Berkowitz R L. Ultrasonographic screening for the Down syndrome fetus.  Am J Obstet Gynecol. 1991;  165 349-352
  • 14 American College of Obstetricians and Gynecologists Committee on Practice Bulletins-Obstetrics . ACOG practice bulletin. Clinical management guidelines for obstetrician-gynecologists. Prenatal diagnosis of fetal chromosomal abnormalities.  Obstet Gynecol. 2001;  97(suppl) 1-12
  • 15 Nicolaides K H, Azar G, Byrne D, Mansur C, Marks K. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy.  BMJ. 1992;  304 867-869
  • 16 Haddow J E, Palomaki G E, Knight G J, Williams J, Miller W A, Johnson A. Screening of maternal serum for fetal Down's syndrome in the first trimester.  N Engl J Med. 1998;  338 955-961
  • 17 Krantz D A, Larsen J W, Buchanan P D, Macri J N. First-trimester Down syndrome screening: free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A.  Am J Obstet Gynecol. 1996;  174 612-616
  • 18 Snijders R J, Noble P, Sebire N, Souka A, Nicolaides K H. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group.  Lancet. 1998;  352 343-346
  • 19 Wapner R, Thom E, Simpson J L et al.. First Trimester Maternal Serum Biochemistry and Fetal Nuchal Translucency Screening (BUN) Study Group . First-trimester screening for trisomies 21 and 18.  N Engl J Med. 2003;  349 1405-1413
  • 20 Papageorghiou A T, Avgidou K, Spencer K, Nix B, Nicolaides K H. Sonographic screening for trisomy 13 at 11 to 13( + 6) weeks of gestation.  Am J Obstet Gynecol. 2006;  194 397-401
  • 21 Shimizu C, Bryant-Greenwood P. Post-genome molecular diagnostics in obstetrics.  Curr Opin Obstet Gynecol. 2004;  16 167-177
  • 22 Leonard J V, Morris A A. Diagnosis and early management of inborn errors of metabolism presenting around the time of birth.  Acta Paediatr. 2006;  95 6-14
  • 23 American College of Obstetrics and Gynecology . ACOG technology assessment. Genetics and molecular diagnostic testing. Number 1, July 2002. American College of Obstetrics and Gynecology.  Int J Gynaecol Obstet. 2002;  79 67-85
  • 24 Chiu R W, Lau T K, Cheung P T, Gong Z Q, Leung T N, Lo Y M. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study.  Clin Chem. 2002;  48 778-780
  • 25 Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma.  Lancet. 2000;  356 1170
  • 26 Watanabe A, Sekizawa A, Taguchi A et al.. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood.  Hum Genet. 1998;  102 611-615
  • 27 Liu J, Lissens W, Devroey P, Liebaers I, Van Steirteghem A. Cystic fibrosis, Duchenne muscular dystrophy and preimplantation genetic diagnosis.  Hum Reprod Update. 1996;  2 531-539
  • 28 Bianchi D W. Circulating fetal DNA: its origin and diagnostic potential-a review.  Placenta. 2004;  25(suppl A) S93-S101
  • 29 Sekizawa A, Saito H. Prenatal screening of single-gene disorders from maternal blood.  Am J Pharmacogenomics. 2001;  1 111-117
  • 30 Banks R, Selby P. Clinical proteomics: insights into pathologies and benefits for patients.  Lancet. 2003;  362 415-416
  • 31 Eisenberg B, Wapner R J. Clinical procedures in prenatal diagnosis.  Best Pract Res Clin Obstet Gynaecol. 2002;  16 611-627
  • 32 Caughey A B, Hopkins L M, Norton M E. Chorionic villus sampling compared with amniocentesis and the difference in the rate of pregnancy loss.  Obstet Gynecol. 2006;  108 612-616
  • 33 Leschot N J, Verjaal M, Treffers P E. Risks of midtrimester amniocentesis: assessment in 3000 pregnancies.  Br J Obstet Gynaecol. 1985;  92 804-807
  • 34 Nicolaides K, Brizot Mde L, Patel F, Snijders R. Comparison of chorionic villus sampling and amniocentesis for fetal karyotyping at 10-13 weeks' gestation.  Lancet. 1994;  344 435-439
  • 35 Ghidini A, Sepulveda W, Lockwood C J, Romero R. Complications of fetal blood sampling.  Am J Obstet Gynecol. 1993;  168 1339-1344
  • 36 Liou J D, Chu D C, Cheng P J et al.. Human chromosome 21-specific DNA markers are useful in prenatal detection of Down syndrome.  Ann Clin Lab Sci. 2004;  34 319-323
  • 37 Sanchez-Garcia J F, Gallardo D, Ramirez L, Vidal F. Multiplex fluorescent analysis of four short tandem repeats for rapid haemophilia A molecular diagnosis.  Thromb Haemost. 2005;  94 1099-1103
  • 38 Gonzalez-Gonzalez M C, Trujillo M J, Rodriguez de Alba M, Ramos C. Early Huntington disease prenatal diagnosis by maternal semiquantitative fluorescent-PCR.  Neurology. 2003;  60 1214-1215
  • 39 Aoshima T, Kajita M, Sekido Y et al.. Carbamoyl phosphate synthetase I deficiency: molecular genetic findings and prenatal diagnosis.  Prenat Diagn. 2001;  21 634-637
  • 40 Sermon K, Van Steirteghem A, Liebaers I. Preimplantation genetic diagnosis.  Lancet. 2004;  363 1633-1641
  • 41 Hulten M A, Dhanjal S, Pertl B. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR.  Reproduction. 2003;  126 279-297
  • 42 Verlinsky Y, Ginsberg N, Chmura M et al.. Cross-hybridization of the chromosome 13/21 alpha satellite DNA probe to chromosome 22 in the prenatal screening of common chromosomal aneuploidies by FISH.  Prenat Diagn. 1995;  15 831-834
  • 43 Wells D, Escudero T, Levy B, Hirschhorn K, Delhanty J D, Munne S. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy.  Fertil Steril. 2002;  78 543-549
  • 44 Surbek D V, Holzgreve W, Nicolaides K H. Haematopoietic stem cell transplantation and gene therapy in the fetus: ready for clinical use?.  Hum Reprod Update. 2001;  7 85-91
  • 45 Waddington S N, Kramer M G, Hernandez-Alcoceba R et al.. In utero gene therapy: current challenges and perspectives.  Mol Ther. 2005;  11 661-676
  • 46 Lieber C D. Introduction to proteomics. In: Tools for the New Biology. Totowa, NJ; Humana Press Inc 2002
  • 47 Venter J C, Adams M D, Myers E W et al.. The sequence of the human genome.  Science. 2001;  291 1304-1351
  • 48 Banks R E, Dunn M J, Hochstrasser D F et al.. Proteomics: new perspectives, new biomedical opportunities.  Lancet. 2000;  356 1749-1756
  • 49 Zenclussen A C, Zenclussen M L, Ritter T, Volk H D. The use of gene therapy tools in reproductive immunology research.  Curr Gene Ther. 2005;  5 459-466
  • 50 Muthusamy B, Hanumanthu G, Suresh S et al.. Plasma Proteome Database as a resource for proteomics research.  Proteomics. 2005;  5 3531-3536
  • 51 Monti M, Orru S, Pagnozzi D, Pucci P. Interaction proteomics.  Biosci Rep. 2005;  25 45-56
  • 52 Mizejewski G J. Biological roles of alpha-fetoprotein during pregnancy and perinatal development.  Exp Biol Med (Maywood). 2004;  229 439-463
  • 53 Farag K, Hassan I, Ledger W L. Prediction of preeclampsia: can it be achieved?.  Obstet Gynecol Surv. 2004;  59 464-482
  • 54 Park K H, Yoon B H, Shim S S, Jun J K, Syn H C. AF tumor necrosis factor-alpha is a marker for the prediction of early-onset neonatal sepsis in preterm labor.  Gynecol Obstet Invest. 2004;  58 84-90
  • 55 Lockwood C J, Krikun G, Schatz F. Decidual cell-expressed tissue factor maintains hemostasis in human endometrium.  Ann NY Acad Sci. 2001;  943 77-88
  • 56 Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver.  Electrophoresis. 1997;  18 533-537
  • 57 Kong F, Nicole White C, Xiao X et al.. Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer.  Gynecol Oncol. 2006;  100 247-253
  • 58 Papadopoulos M C, Abel P M, Agranoff D et al.. A novel and accurate diagnostic test for human African trypanosomiasis.  Lancet. 2004;  363 1358-1363
  • 59 Pucci-Minafra I, Fontana S, Cancemi P, Alaimo G, Minafra S. Proteomic patterns of cultured breast cancer cells and epithelial mammary cells.  Ann NY Acad Sci. 2002;  963 122-139
  • 60 Meehan K L, Holland J W, Dawkins H J. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer.  Prostate. 2002;  50 54-63
  • 61 Buhimschi I A, Christner R, Buhimschi C S. Proteomic biomarker analysis of AF for identification of intra-amniotic inflammation.  BJOG. 2005;  112 173-181
  • 62 Buhimschi C S, Bhandari V, Hamar B D et al.. Proteomic profiling of the amniotic fluid to detect inflammation, infection and neonatal sepsis.  PLoS Med. 2007;  4 e18
  • 63 Buhimschi I A, Buhimschi C S, Weiner C P et al.. Proteomic but not enzyme-linked immunosorbent assay technology detects AF monomeric calgranulins from their complexed calprotectin form.  Clin Diagn Lab Immunol. 2005;  12 837-844
  • 64 Wang T H, Chang Y L, Peng H H et al.. Rapid detection of fetal aneuploidy using proteomics approaches on AF supernatant.  Prenat Diagn. 2005;  25 559-566
  • 65 Wiederkehr F, Vonderschmitt D J. [2-dimensional electrophoresis of cerebrospinal fluid in various neurological patients].  Schweiz Med Wochenschr. 1985;  115 368-373
  • 66 Chen J H, Chang Y W, Yao C W et al.. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry.  Proc Natl Acad Sci USA. 2004;  101 17039-17044
  • 67 Fung K Y, Glode L M, Green S, Duncan M W. A comprehensive characterization of the peptide and protein constituents of human seminal fluid.  Prostate. 2004;  61 171-181
  • 68 Vuadens F, Benay C, Crettaz D et al.. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach.  Proteomics. 2003;  3 1521-1525
  • 69 Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.  Electrophoresis. 1997;  18 2071-2077
  • 70 Patterson S D, Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins.  Electrophoresis. 1995;  16 1791-1814
  • 71 Gygi S P, Aebersold R. Mass spectrometry and proteomics.  Curr Opin Chem Biol. 2000;  4 489-494
  • 72 Yates III J R. Mass spectrometry: from genomics to proteomics.  Trends Genet. 2000;  16 5-8
  • 73 Kuwata H, Yip T T, Yip C L, Tomita M, Hutchens T W. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry.  Biochem Biophys Res Commun. 1998;  245 764-773
  • 74 Fung E T, Yip T T, Lomas L et al.. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays.  Int J Cancer. 2005;  115 783-789
  • 75 Hermjakob H, Apweiler R. The Proteomics Identifications Database (PRIDE) and the ProteomExchange Consortium: making proteomics data accessible.  Expert Rev Proteomics. 2006;  3 1-3
  • 76 Lo S L, You T, Lin Q, Joshi S B, Chung M C, Hew C L. SPLASH: systematic proteomics laboratory analysis and storage hub.  Proteomics. 2006;  6 1758-1769
  • 77 Hochstrasser D F. Proteome in perspective.  Clin Chem Lab Med. 1998;  36 825-836
  • 78 Gross S J, Ferreira J C, Morrow B et al.. Gene expression profile of trisomy 21 placentas: a potential approach for designing noninvasive techniques of prenatal diagnosis.  Am J Obstet Gynecol. 2002;  187 457-462
  • 79 Oh J E, Fountoulakis M, Juranville J F, Rosner M, Hengstschlager M, Lubec G. Proteomic determination of metabolic enzymes of the amnion cell: basis for a possible diagnostic tool?.  Proteomics. 2004;  4 1145-1158
  • 80 Hasegawa Y, Iga M, Kimura M, Shigematsu Y, Yamaguchi S. Prenatal diagnosis for organic acid disorders using two mass spectrometric methods, gas chromatography mass spectrometry and tandem mass spectrometry.  J Chromatogr B Analyt Technol Biomed Life Sci. 2005;  823 13-17
  • 81 Ramsay S L, Maire I, Bindloss C et al.. Determination of oligosaccharides and glycolipids in AF by electrospray ionisation tandem mass spectrometry: in utero indicators of lysosomal storage diseases.  Mol Genet Metab. 2004;  83 231-238
  • 82 Yang B Z, Mallory J M, Roe D S et al.. Carnitine/acylcarnitine translocase deficiency (neonatal phenotype): successful prenatal and postmortem diagnosis associated with a novel mutation in a single family.  Mol Genet Metab. 2001;  73 64-70
  • 83 Busch A, Michel S, Hoppe C, Driesch D, Claussen U, von Eggeling F. Proteome analysis of maternal serum samples for trisomy 21 pregnancies using ProteinChip arrays and bioinformatics.  J Histochem Cytochem. 2005;  53 341-343
  • 84 Bahtiyar M, Mahoney M, Copel J A. Amniotic fluid proteomic analysis identifies fetal gender and Down syndrome: a new rapid technique for prenatal diagnosis.  Am J Obstet Gynecol. 2002;  187 S181
  • 85 D'Alton M, Luthy D, Malone F et al.. Detection of Down syndrome by proteomic profiling of maternal serum.  Am J Obstet Gynecol. 2004;  191 S2
  • 86 Vuadens F, Benay C, Crettaz D et al.. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach.  Proteomics. 2003;  3 1521-1525
  • 87 Gravett M G, Novy M J, Rosenfeld R G et al.. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers.  JAMA. 2004;  292 462-469
  • 88 Weiner C P, Lee K Y, Buhimschi C S, Christner R, Buhimschi I A. Proteomic biomarkers that predict the clinical success of rescue cerclage.  Am J Obstet Gynecol. 2005;  192 710-718
  • 89 Buhimschi C S, Weiner C P, Buhimschi I A. Proteomics, part II: the emerging role of proteomics over genomics in spontaneous preterm labor/birth.  Obstet Gynecol Surv. 2006;  61 543-553
  • 90 Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers.  Genome Res. 2001;  11 1878-1887
  • 91 Tsangaris G T, Karamessinis P, Kolialexi A et al.. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome.  Proteomics. 2006;  6 4410-4419
  • 92 Tsui N B, Chiu R W, Ding C et al.. Detection of Trisomy 21 by quantitative mass spectrometric analysis of single-nucleotide polymorphisms.  Clin Chem. 2005;  51 2358-2362
  • 93 Rinaldo P, Hahn S, Matern D. Clinical biochemical genetics in the twenty-first century.  Acta Paediatr Suppl. 2004;  93 22-26
  • 94 Schwab K O, Ensenauer R, Matern D et al.. Complete deficiency of mitochondrial trifunctional protein due to a novel mutation within the beta-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid beta-oxidation with fatal outcome.  Eur J Pediatr. 2003;  162 90-95
  • 95 Matern D, He M, Berry S A et al.. Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry.  Pediatrics. 2003;  112 74-78
  • 96 Struys E A, Jansen E E, Gibson K M, Jakobs C. Determination of the GABA analogue succinic semialdehyde in urine and cerebrospinal fluid by dinitrophenylhydrazine derivatization and liquid chromatography-tandem mass spectrometry: application to SSADH deficiency.  J Inherit Metab Dis. 2005;  28 913-920
  • 97 Thomason M J, Lord J, Bain M D et al.. A systematic review of evidence for the appropriateness of neonatal screening programmes for inborn errors of metabolism.  J Public Health Med. 1998;  20 331-343
  • 98 Ho B C, Fenselau C, Hansen G, Larsen J, Daniel A. Dipalmitoylphosphatidylcholine in amniotic fluid quantified by fast-atom-bombardment mass spectrometry.  Clin Chem. 1983;  29 1349-1353
  • 99 Jellum E, Kvittingen E A, Stokke O. Mass spectrometry in diagnosis of metabolic disorders.  Biomed Environ Mass Spectrom. 1988;  16 57-62
  • 100 Shigematsu Y, Kikawa Y, Sudo M, Kanaoka H, Fujioka M, Dan M. Prenatal diagnosis of isovaleric acidemia by fast atom bombardment and tandem mass spectrometry.  Clin Chim Acta. 1991;  203 369-374
  • 101 Yang B Z, Mallory J M, Roe D S et al.. Carnitine/acylcarnitine translocase deficiency (neonatal phenotype): successful prenatal and postmortem diagnosis associated with a novel mutation in a single family.  Mol Genet Metab. 2001;  73 64-70
  • 102 Inoue Y, Kuhara T. Rapid and sensitive method for prenatal diagnosis of propionic acidemia using stable isotope dilution gas chromatography-mass spectrometry and urease pretreatment.  J Chromatogr B Analyt Technol Biomed Life Sci. 2002;  776 71-77
  • 103 Kumps A, Vamos E, Mardens Y, Abramowicz M, Genin J, Duez P. Assessment of an electron-impact GC-MS method for organic acids and glycine conjugates in amniotic fluid.  J Inherit Metab Dis. 2004;  27 567-579
  • 104 Morel C F, Watkins D, Scott P, Rinaldo P, Rosenblatt D S. Prenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport.  Mol Genet Metab. 2005;  86 160-171
  • 105 Heckel S, Favre R, Flori J et al.. In utero fetal muscle biopsy: a precious aid for the prenatal diagnosis of Duchenne muscular dystrophy.  Fetal Diagn Ther. 1999;  14 127-132
  • 106 Leturcq F, Kaplan J C. Molecular bases of dystrophinopathies.  J Soc Biol. 2005;  199 5-11
  • 107 Katayama S, Yano T, Takeshita N et al.. Prenatal diagnosis of Duchenne muscular dystrophy by restriction fragment length polymorphism analysis with pERT 87 intragenomic deoxyribonucleic acid probes.  Nippon Sanka Fujinka Gakkai Zasshi. 1991;  43 633-640
  • 108 Sekizawa A, Kimura T, Sasaki M, Nakamura S, Kobayashi R, Sato T. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood.  Neurology. 1996;  46 1350-1353
  • 109 Touboul D, Piednoel H, De La Porte S et al.. Changes of phospholipid composition within the dystrophic muscle by matrix-assisted laser desorption/ionization mass spectrometry and mass spectrometry imaging.  European Journal of Mass Spectrometry. 2004;  10 657-664

Mert Ozan BahtiyarM.D. 

Department of Obstetrics and Gynecology, Yale University School of Medicine

333 Cedar Street, P.O. Box 208063, New Haven, CT 06520-8063

    >