Abstract
The metal phytoextraction potential of three legumes belonging to different genera
has been studied under greenhouse conditions. Legumes accumulate As and metals mainly
in roots, although translocation to shoot is observed. Alfalfa did accumulate the
highest concentrations of As and metals in shoots and aerial biomass was less affected
by the toxic elements, indicating its good behaviour in phytoextraction. Clover accumulated
less metal, but showed larger biomass. EDTA addition enhanced Pb phytoextraction up
to levels similar to those described for plants proposed in phytoremediation. The
regulation of O-acetylserine (thiol)lyase from legumes under metal stress has been
analysed to test the possibility of establishing a possible correlation between the
expression of OASTL in the presence of the metals and the metal accumulation in legume
plant tissues. Cd and Pb(EDTA) produce the strongest increases of OASTL activity,
with the higher enhancement seen in roots, in parallel with the higher metal accumulation.
Arsenic produced an increase of root enzyme activity, whereas Cu produced a decrease,
mainly in shoots. Western blots using antibodies against an A. thaliana cytosolic OAS‐TL recognised up to five protein bands in crude extracts from Lotus and clover. A low molecular weight isoform of 32 kDa was induced in the presence
of Cd and Pb. A partial RT‐PCR sequence from clover has been obtained, showing 86
- 97 % identity with other described OASTLs. The PCR fragment has been used to analyse
OASTL mRNA levels of legumes under metal stress. OASTL transcripts were increased by As, Cd, and Pb, especially in roots, where metal accumulation
was maximal, while Cu produced a decrease in the transcript levels.
Key words
Arsenic - cysteine biosynthesis - heavy metals -
Lotus japonicus
-
Medicago sativa
-
Trifolium subterraneum
References
1
Ager F. J., Ynsa M. D., Domínguez-Solís J. R., Gotor C., Respaldiza M. A., Romero L. C..
Cadmium localization and quantification in the plant Arabidopsis thaliana using Micro-PIXE.
Nuclear Instruments and Methods in Physics Research B.
(2002);
189
494-498
2 Baker A. J. M., McGrath S. P., Reeves R. D., Smith J. A. C..
Metal hyperaccumulator plants: a review of the ecology and physiology of a biological
resource for phytoremediation of metal-polluted soils. Terry, N. and Bañuelos, G., eds. Phytoremediation of Contaminated Soil and Water. Boca
Raton, FL; Lewis Publishers (2000): 85-107
3
Barroso C., Vega J. M., Gotor C..
A new member of the cytosolic O-acetylserine(thiol)lyase family in Arabidopsis thaliana .
FEBS Letters.
(1995);
363
1-5
4
Blaylock M. J., Salt D. E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B. D.,
Raskin I..
Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents.
Environmental Science and Technology.
(1997);
31
860-865
5
Bonner E. R., Cahoon R. E., Knape S. M., Jez J. M..
Molecular basis of cysteine biosynthesis in plants. Structural and functional analysis
of O-acetylserine sulfhydrilase from Arabidopsis thaliana .
Journal of Biological Chemistry.
(2005);
280
38803-38812
6
Bradford M. M..
A rapid and sensitive method for quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding.
Analytical Biochemistry.
(1976);
72
248-254
7
Bricker T. J., Pichtel J., Brown H. G., Simmons M..
Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.
Journal of Environmental Science and Health.
(2004);
36
1597-1610
8
Callahan D. L., Baker A. J. M., Kolev S. D., Wedd A. G..
Metal ion ligands in hyperaccumulating plants.
Journal of Biological Inorganic Chemistry.
(2006);
11
2-12
9
Carrasco J. A., Armario P., Pajuelo E., Burgos A., Caviedes M. A., López R., Chamber M. A.,
Palomares A. J..
Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite
mine.
Soil Biology and Biochemistry.
(2005);
37
1131-1140
10
Clemens S..
Evolution and function of phytochelatin synthases.
Journal of Plant Physiology.
(2006);
163
319-332
11
Cooper E. M., Sims J. T., Cunningham S. D., Huang J. W., Berti W. R..
Chelate-assisted phytoextraction of lead from contaminated soils.
Journal of Environmental Quality.
(1999);
28
1709-1719
12 Del Río M., Font R., De Haro A..
Phytoremediation: use of wild and cultivated plants to clean up the soils polluted
by the toxic spill of the Aznalcollar mine (Seville, Southern Spain). A review. Pandalai, S. G., ed. Recent Research Developments in Genetics and Breeding, Vol.
1. Kerala, India; Research Signpost (2004): 67-82
13
Domínguez-Solís J. R., Gutiérrez-Alcalá G., Vega J. M., Romero L. C., Gotor C..
The cytosolic O-acetylsetine(thiol)lyase gene is regulated by heavy metals and can
function in cadmium tolerance.
Journal of Biological Chemistry.
(2001);
276
9297-9302
14
Domínguez-Solís J. R., López-Martín M. C., Ager F. J., Ynsa M. D., Romero L. C., Gotor C..
Increased cysteine availability is essential for cadmium tolerance and accumulation
in Arabidopsis thaliana .
Plant Biotechnology Journal.
(2004);
2
469-476
15
Evans K. M., Gatehouse J. A., Linsay W. P., Shi J., Tommey A. M., Robinson N. J..
Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function.
Plant Molecular Biology.
(1992);
20
1019-1028
16
García-Hernández M., Murphy A., Taiz L..
Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis .
Plant Physiology.
(1998);
118
387-397
17
Gisbert C., Ros R., De Haro A., Walter D. J., Bernal M. P., Serrano R., Navarro-Aviñó J..
A plant genetically modified that accumulates Pb is especially promising for phytoremediation.
Biochemical and Biophysical Research Communications.
(2003);
303
440-445
18
Gotor C., Cejudo F. J., Barroso C., Vega J. M..
Tissue-specific expression of ATCYS3A, a gene encoding the cytosolic isoform of O-acetylserine(thiol)lyase
in Arabidopsis .
The Plant Journal.
(1997);
11
347-352
19
Graham P. H., Vance C. P..
Legumes: importance and constraints to greater use.
Plant Physiology.
(2003);
131
872-877
20
Grimalt J. O., Ferrer M., Macpherson E..
The mine tailing accident in Aznalcóllar.
The Science of the Total Environment.
(1999);
242
3-11
21
Gutiérrez-Alcalá G., Gotor C., Meyer A. J., Fricker M., Vega J. M., Romero L. C..
Glutathione biosynthesis in Arabidopsis trichome cells.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
11108-11113
22
Hawkesford M. J., De Kok L. J..
Managing sulphur metabolism in plants.
Plant, Cell and Environment.
(2006);
29
382-395
23
Lasat M. M..
Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction
and assessment of pertinent agronomic issues.
Journal of Hazardous Substances Research.
(2000);
2
1-25
24
Lee S., Moon J. S., Ko T. S., Petros D., Goldsbrough P. B., Korban S. S..
Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.
Plant Physiology.
(2003);
131
656-663
25
Lombi E., Zhao F. J., Dunham S. J., McGrath S. P..
Natural hyperaccumulation versus chemically enhanced phytoextraction.
Journal of Environmental Quality.
(2001);
30
1919-1926
26
Ma L. Q., Komar K. M., Tu C., Zhang W., Cai Y., Kennelly E. D..
A fern that hyperaccumulates arsenic.
Nature.
(2001);
409
579-581
27
McIntyre T..
Phytoremediation of heavy metals from soils.
Advances in Biochemical Engineering/Biotechnology.
(2003);
78
98-123
28
Murillo J. M., Marañón T., Cabrera F., López R..
Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar
spill.
The Science of the Total Environment.
(1999);
242
281-292
29 Pajuelo E., Stougaard J..
Lotus japonicus as model system. Márquez, A. J., ed. The Lotus japonicus Handbook. Dordrecht, The Netherlands; Springer-Verlag (2005): 3-24
30
Pastor J., Hernández A. J., Prieto N., Fernández-Pascual M..
Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.
Journal of Plant Physiology.
(2003);
160
1457-1465
31
Pence N. S., Larsen P. B., Ebbs S. D., Letham D. L. D., Lasat M. M., Garvin D. F.,
Eide D. E., Kochian L.V..
The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens .
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
4956-4960
32
Persans M. W., Yan X., Patnone J. M. L., Krämer U., Salt D. E..
Molecular dissection of the role of histidine in nickel hyperaccumulator in Thlaspi goesingense (Hálácsy).
Plant Physiology.
(1999);
121
1117-1126
33
Pilon-Smits E. A. H..
Phytoremediation.
Annual Review of Plant Biolology.
(2005);
56
15-39
34
Prasad M. N. V., Freitas H. M. O..
Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology.
Electronic Journal of Biotechnology.
(2003);
6
285-321
35
Schäfer H. J., Haag-Kerwer A., Rausch T..
cDNA cloning and expression analysis of genes encoding GSH biosynthesis in roots of
the heavy-metal accumulator Brassica juncea L.: evidence for Cd induction of a putative mitochondrial γ-glutamyl cysteine synthetase
isoform.
Plant Molecular Biology.
(1998);
37
87-97
36
Serrano A., Chamber M..
Nitrate reduction in Bradyrhizobium sp. (Lupinus) strains and its effects on their symbiosis with Lupinus luteus .
Journal of Plant Physiology.
(1990);
136
240-246
37
Sirko A., Blaszczyk A., Liszewska F..
Overproduction of SAT and/or OASTL in transgenic plants. A survey of effects.
Journal of Experimental Botany.
(2004);
55
1881-1888
38
Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y., Jasinski M., Forestier C.,
Hwang I., Lee Y..
Engineering tolerance and accumulation of lead and cadmium in transgenic plants.
Nature Biotechnology.
(2003);
21
914-919
39
Sriprang R., Hayashi M., Yamashita M., Ono H., Saeki K., Murooka Y..
A novel bioremediation system for heavy metals using the symbiosis between leguminous
plant and genetically engineered rhizobia.
Journal of Biotechnology.
(2002);
99
279-293
40
Wang J., Zhao F. J., Meharg A. A., Raab A., Feldman J., McGrath S. P..
Mechanism of arsenic hyperaccumulation in Pteris vittata . Uptake kinetics, interactions with phosphate and arsenic speciation.
Plant Physiology.
(2002);
130
1552-1561
41
Wawrzynski A., Kopera E., Wawrzynska A., Kaminska J., Bal W., Sirko A..
Effects of simultaneous expression of heterologous genes involved in phytochelatin
biosynthesis on thiols content and cadmium accumulation in tobacco plants.
Journal of Experimental Botany.
(2006);
57
2173-2182
42
Wirtz M., Hell R..
Functional analysis of the cysteine synthase protein complex from plants: structural,
biochemical and regulatory properties.
Journal of Plant Physiology.
(2006);
163
273-286
43
Xiang C., Oliver D. J..
Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid
in Arabidopsis .
Plant Cell.
(1998);
10
1539-1550
44
Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., Terry N..
Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation
and tolerance.
Plant Physiology.
(1999 a);
119
73-79
45
Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N..
Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing
γ-glutamylcysteine synthetase.
Plant Physiology.
(1999 b);
121
1169-1177
C. Gotor
Instituto de Bioquímica Vegetal y Fotosíntesis Centro de Investigaciones Científicas Isla de la Cartuja CSIC and Universidad de Sevilla
Avda. Américo Vespucio, 49
41092 Sevilla
Spain
eMail: gotor@ibvf.csic.es
Guest Editor: T. Rausch