Plant Biol (Stuttg) 2007; 9: e99-e104
DOI: 10.1055/s-2007-965429
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Isoprene Emission and Primary Metabolism in Phragmites australis Grown Under Different Phosphorus Levels

S. Fares1 , F. Brilli1 , I. Noguès1 , V. Velikova2 , T. Tsonev2 , S. Dagli3 , F. Loreto1
  • 1Istituto di Biologia Agroambientale e Forestale (IBAF), Via Salaria km. 29,300, 00016 Monterotondo Scalo (Roma), Italy
  • 2Institute of Plant Physiology “M. Popov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
  • 3Scientific and Technical Research Council of Turkey, Marmara Research Center Energy Systems and Environmental Research Institute, 41470 Gebze Kocaeli, Turkey
Further Information

Publication History

Received: November 7, 2006

Accepted: April 10, 2007

Publication Date:
29 August 2007 (online)

Abstract

Aquatic plants are generally used for wastewater purification and phytoremediation, but some of them also emit large amounts of isoprene, the most abundant biogenic volatile organic compound. Since isoprenoid biosynthesis requires high amounts of phosphorylated intermediates, the emission may also be controlled by inorganic phosphorus concentration (Pi) in leaves. We carried out experiments to determine the emission of isoprene from Phragmites australis plants used in reconstructed wetlands to phytoremediate elevated levels of phosphorus contributed by urban wastes. Four groups of plants were grown hydroponically in water containing different levels of KH2PO4. High levels of phosphorus in the water resulted in high Pi in the leaves. High Pi stimulated photosynthesis at intercellular CO2 concentrations lower and higher than ambient, implying higher ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and higher ribulose 1,5-bisphosphate regeneration rates, respectively. However, isoprene emission was substantially lower at high Pi than at low Pi, and was not associated to photosynthesis rates at high Pi. This surprising result suggests that isoprene is limited by processes other than photosynthetic intermediate availability or by energetic (ATP) requirements under high Pi levels. Irrespective of the mechanism responsible for the observed reduction of isoprene emission, our results show that Phragmites plants may effectively remove phosphorus from water without concurrently increase isoprene emission, at least on a leaf area basis. Thus, Phragmites used in reconstructed wetlands for phytoremediation of urban wastes rich of phosphates will not contribute high loads of hydrocarbons which may influence air quality over urban and peri-urban areas.

References

  • 1 Atkinson R., Arey J.. Atmospheric chemistry of biogenic organic compounds.  Accounts of Chemical Research. (1998);  31 574-583
  • 2 Buysse J., Merckx R.. An improved colorimetric method to quantify sugar content of plant tissue.  Journal of Experimental Botany. (1993);  44 1627-1629
  • 3 Eaton A. D., Clesceri L. S., Greenberg A. E., Franson M. A. H.. American Public Health Association, American Water Works Association and Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC; American Public Health Association (1995)
  • 4 Farquhar G. D., von Caemmerer S., Berry J. A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 5 Guenther A., Hewitt C. N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman P.. A global model of natural volatile organic compound emissions.  Journal of Geophysical Research. (1995);  100 8873-8892
  • 6 Litvak M. E., Loreto F., Harley P. C., Sharkey T. D., Monson R. K.. The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees.  Plant, Cell and Environment. (1996);  19 549-559
  • 7 Loreto F., Sharkey T. D.. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions.  Planta. (1993);  189 420-424
  • 8 Loreto F., Di Marco G., Tricoli D., Sharkey T. D.. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves.  Photosynthesis Research. (1994);  41 397-403
  • 9 Loreto F., Fischbach R. J., Schnitzler J. P., Ciccioli P., Brancaleoni E., Calfapietra C., Seufert G.. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations.  Global Change Biology. (2001);  7 709-717
  • 10 Loreto F., Pinelli P., Manes F., Kollist H.. Impact of ozone on monoterpene emission and evidence for an isoprene-like antioxidant action of monoterpens emitted by Quercus ilex leaves.  Tree Physiology. (2004);  24 361-367
  • 11 Loreto F., Barta C., Brilli F., Nogues I.. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.  Plant, Cell and Environment. (2006);  29 1820-1828
  • 12 Mulligan D.. Phosphorus concentrations and chemical fractions in Eucalyptus seedlings grown for a prolonged period under nutrient-deficient conditions.  New Phytologist. (1988);  110 479-486
  • 13 Neal C., Reynolds B., Neal M., Hughes S., Wickham H., Hill L., Rowland P., Pugh B.. Soluble reactive phosphorus levels in rainfall, cloud water, throughfall, stemflow, soil waters, stream waters and groundwaters for the Upper River Severn area, Plynlimon, mid Wales.  The Science of the Total Environment. (2003);  1 99-120
  • 14 Niinemets U., Loreto F., Reichstein M.. Physiological and physicochemical controls on foliar volatile organic compound emissions.  Trends in Plant Science. (2004);  9 180-186
  • 15 Penuelas J., Llusia J.. BVOCs: plant defense against climate warming?.  Trends in Plant Science. (2003);  8 105-109
  • 16 Penuelas J., Munnè-Bosch S.. Isopenoids: an evolutionary pool for photoprotection.  Trends in Plant Science. (2005);  10 166-169
  • 17 Pegoraro E., Rey A., Greenberg J., Harley P., Grace J., Malhi Y., Guenther A.. Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill.  Atmospheric Environment. (2004);  38 6149-6156
  • 18 Rosenstiel T. N., Ebbets A. L., Khatri W. C., Fall R., Monson R. K.. Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate.  Plant Biology. (2004);  6 12-21
  • 19 Scholefield P. A., Doick K. J., Herbert B., Hewitt C. N., Schnitzler J.-P., Pinelli P., Loreto F.. Impact of rising CO2 on VOC emissions: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring.  Plant, Cell and Environment. (2004);  27 393-401
  • 20 Sharkey T. D.. Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation.  Botanical Magazine of Tokyo Special Issue. (1990);  2 87-105
  • 21 Sharkey T. D., Loreto F.. Water stress, temperature, and light effects on the capacity for isoprene emissions and photosynthesis of kudzu leaves.  Oecologia. (1993);  95 328-333
  • 22 Sharkey T. D.. Isoprene synthesis by plants and animals.  Endeavour. (1996);  20 74-78
  • 23 Sharkey T. D., Yeh S. S.. Isoprene emission from plants.  Annual Review of Plant Physiology and Plant Molecular Biology. (2001);  52 407-436
  • 24 Spivakov B. Y., Maryutina T. A., Muntau H.. Phosphorus speciation in water and sediments.  Pure and Applied Chemistry. (1999);  71 2161-2176
  • 25 Velikova V., Tsonev T., Pinelli P., Alessio G. A., Loreto F.. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species.  Tree Physiology. (2005);  12 1523-1532
  • 26 Ye Z. H., Wong M. H., Baker A. G. M., Willis A. J.. Comparison of Biomass and Metal Uptake between two populations of Phragmites australis grown in flooded and dry conditions.  Annals of Botany. (1998);  82 83-87
  • 27 Wassen M. J., Venterink H. O., Lapshina E. D., Tanneberger F.. Endangered plants persist under phosphorus limitation.  Nature. (2005);  437 547-550

S. Fares

Istituto di Biologia Agroambientale e Forestale (IBAF)

Via Salaria Km. 29,300

00016 Monterotondo Scalo (Roma)

Italy

Email: silvano.fares@ibaf.cnr.it

Editor: H. Rennenberg

    >