Plant Biol (Stuttg) 2007; 9(6): 766-775
DOI: 10.1055/s-2007-965251
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Effect of Seed Size on Seedling Growth Response to Elevated CO2 in Picea abies and Picea rubens

T. A. Jones1 , E. G. Reekie1
  • 1Biology Department, Acadia University, 24 University Ave., B4P 2R6 Wolfville, NS, Canada
Weitere Informationen


Received: February 10, 2007

Accepted: March 19, 2007

12. Juni 2007 (online)


Several previous studies have observed that species and individuals with large seeds respond more positively to elevated CO2 than those with small seeds. We explored the reasons for this pattern by examining the relationship between seed size and CO2 response in Picea abies and P. rubens using growth analysis. The large seeded species (P. abies) responded more positively to elevated CO2 than the small seeded species (P. rubens). At the intraspecific level, P. abies individuals from large seeds responded more positively to elevated CO2 than individuals from small seeds, however, there was no significant intraspecific variation in CO2 response in P. rubens. The greater CO2 response of plants from large seeds was not simply the result of a larger starting capital compounded at the same rate as in plants from small seeds. Elevated CO2 increased relative growth rate to a greater extent in individuals from large seeds. This effect appears to be related to differences in time of establishment, source to sink ratio and nutrient availability with seed size. These results are significant not only in understanding the potential effect of rising atmospheric CO2 concentrations on plant populations, but also in understanding the factors affecting plant success at current atmospheric CO2 levels due to the elevation of CO2 within the litter layer that occurs at many germination sites.


  • 1 Bazzaz F. A., Miao S. L.. Successional status, seed size, and responses of tree seedlings to carbon dioxide light, and nutrients.  Ecology. (1993);  74 104-112
  • 2 Bazzaz F. A., Miao S. L., Wayne P. M.. CO2 induced growth enhancement of co-occurring tree species decline at different rates.  Oecologia. (1993);  96 478-482
  • 3 Bazzaz F. A., Williams W. E.. Atmospheric CO2 concentrations within a mixed forest: implications for seedling growth.  Ecology. (1991);  72 12-16
  • 4 Bunce J. A.. Light, temperature and nutrients as factors in photosynthetic adjustment to an elevated concentration of carbon dioxide.  Physiologia Plantarum. (1992);  86 175-179
  • 5 Clough J. M., Peet M. M., Kramer P. J.. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of soybean cultivars.  Plant Physiology. (1981);  67 1007-1010
  • 6 Diaz S., Grime J. P., Harris J., McPherson E.. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide.  Nature. (1993);  364 616-617
  • 7 Dippery J. K., Tissue D. T., Thomas R. B., Strain B. R.. Effects of low and elevated CO2 on C‐3 and C‐4 annuals. I. Growth and biomass allocation.  Oecologia. (1995);  101 13-20
  • 8 Fenner M.. Seed size and chemical composition: the allocation of minerals to seeds and their use in early seedling growth.  Botanical Journal of Scotland. (2004);  56 163-173
  • 9 Fuller H. J.. Carbon dioxide concentration of the atmosphere above Illinois forest and grassland.  American Midland Naturalist. (1948);  39 247-249
  • 10 Grime J. P., Hunt R.. Relative growth rate: its range and adaptive significance in a local flora.  Journal of Ecology. (1975);  63 393-422
  • 11 Gross K. L.. Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants.  Journal of Ecology. (1984);  72 369-387
  • 12 Grubb P. J.. Mineral nutrient concentrations as a function of seed size within seed crops: implications for competition among seedlings and defence against herbivory.  Journal of Tropical Ecology. (1998);  14 177-185
  • 13 Hamerlynck E. P., McAllister C. A., Knapp A. K., Ham J. M., Owensby C. E.. Photosynthetic gas exchange and water relation responses of three tallgrass prairie species to elevated carbon dioxide and moderate drought.  International Journal of Plant Sciences. (1997);  158 608-616
  • 14 Hand D. W., Wilson J. W., Acock B.. Effects of light and carbon dioxide on net photosynthetic rates of stands of Aubergine and Amaranthus.  Annals of Botany. (1993);  71 209-216
  • 15 Harper J. L.. Population Biology of Plants. London; Academic Press (1977)
  • 16 Hunt R., Hand D. W., Hannah M. A., Neal A. M.. Temporal and nutritional influences on the response to elevated CO2 in selected British grasses.  Annals of Botany. (1995);  75 207-216
  • 17 Jablonski L. M., Wang X. Z., Curtis P. S.. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species.  New Phytologist. (2002);  156 9-26
  • 18 Johnsen K. H.. Growth and ecophysiological responses of black spruce seedlings to elevated carbon dioxide under varied water and nutrient additions.  Canadian Journal of Forest Research. (1993);  23 1033-1042
  • 19 Khurana E., Singh J. S.. Response of five tropical tree seedlings to elevated CO2: impact of seed size and successional status.  New Forests. (2004);  27 139-157
  • 20 Kinney K. K., Lindroth R. L.. Responses of three deciduous tree species to atmospheric CO2 and soil NO3 availability.  Canadian Journal of Forest Research. (1997);  27 1-10
  • 21 Körner C.. Biosphere responses to CO2 enrichment.  Ecological Applications. (2000);  10 1590-1619
  • 22 Kubiske M. E., Pregitzer K. S.. Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance.  Tree Physiology. (1996);  16 351-358
  • 23 Leishman M. R., Westoby M.. The role of large seed size in shaded conditions: experimental evidence.  Functional Ecology. (1994 a);  8 205-214
  • 24 Leishman M. R., Westoby M.. The role of seed size in seedling establishment in dry soil conditions: experimental evidence from semi-arid species.  Journal of Ecology. (1994 b);  82 249-258
  • 25 Leishman M. R., Wright I. J., Moles A. T., Westoby M.. The evolutionary ecology of seed size. Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities. Wallingford; CABI Publishing (2000): 31-57
  • 26 Maranon T., Grubb P. J.. Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals.  Functional Ecology. (1993);  7 591-599
  • 27 Metcalfe D. J., Grubb P. J.. The responses to shade of seedlings of very small-seeded tree and shrub species from tropical rain forest in Singapore.  Functional Ecology. (1997);  11 215-221
  • 28 Miao S.. Acorn mass and seedling growth in Quercus rubra in response to elevated CO2.  Journal of Vegetation Science. (1995);  6 697-700
  • 29 Pages J. P., Michalet R.. A test of the indirect facilitation model in a temperate hardwood forest of the northern French Alps.  Journal of Ecology. (2003);  91 932-940
  • 30 Peet M. M.. Carbon dioxide enrichment of soybeans (Glycine max cultivar Fiskeby-V): effects of leaf to pod ratio.  Physiologia Planatarum. (1984);  60 38-42
  • 31 Poorter H., Navas M.-L.. Plant growth and competition at elevated CO2: winners, losers and functional groups.  New Phytologist. (2003);  157 175-198
  • 32 Prior S. A., Runion G. B., Mitchell R. J., Rogers H. H., Amthor J. S.. Effects of atmospheric CO2 on longleaf pine: productivity and allocation as influenced by nitrogen and water.  Tree Physiology. (1997);  17 397-405
  • 33 Reekie E. G., MacDougall G., Wong I., Hicklenton P. R.. Effect of sink size on growth response to elevated atmospheric CO2 within the genus Brassica.  Canadian Journal of Botany. (1998);  76 829-835
  • 34 Rochefort L., Bazzaz F. A.. Growth response to elevated carbon dioxide in seedling of four co-occurring birch species.  Canadian Journal of Forest Research. (1992);  22 1583-1587
  • 35 Russell E. W.. Soil Conditions and Plant Growth. London; Longman (1973)
  • 36 Schwartz D. M., Bazzaz F. A.. In situ measurements of carbon dioxide gradients in a soil-plant-atmosphere system.  Oecologia. (1973);  12 161-167
  • 37 Seiwa K., Kikuzawa K.. Phenology of tree seedlings in relation to seed size.  Canadian Journal of Botany. (1991);  69 532-538
  • 38 Sparling J. H., Alt M.. The establishment of carbon dioxide gradients in Ontario woodlands.  Canadian Journal of Botany. (1965);  44 321-329
  • 39 Steinger T., Gall R., Schmid B.. Maternal and direct effects of elevated CO2 on seed provisioning, germination and seedling growth in Bromus erectus.  Oecologia. (2000);  123 475-480
  • 40 Thomas R. B., Lewis J. D., Strain B. R.. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO2.  Tree Physiology. (1994);  14 947-960
  • 41 Tissue D. T., Griffin K. L., Thomas R. B., Strain B. R.. Effects of low and elevated CO2 on C‐3 and C‐4 annuals. II. Photosynthesis and leaf biochemistry.  Oecologia. (1995);  101 21-28
  • 42 Tissue D. T., Thomas R. B., Strain B. R.. Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field.  Plant, Cell and Environment. (1997);  20 1123-1134
  • 43 Tripathi R. S., Khan M. L.. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest.  Oikos. (1990);  57 289-296
  • 44 Wright I. J., Westoby M.. Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients.  Journal of Ecology. (1999);  87 85-97

E. G. Reekie

Biology Department
Acadia University

24 University Ave.

B4P 2R6 Wolfville, NS



Editor: R. C. Leegood