Plant Biol (Stuttg) 2007; 9(6): 800-806
DOI: 10.1055/s-2007-965119
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

In Vitro Toxicity towards Kiwifruit Pollen of the Antimicrobial Peptides Magainins 1 and 2

A. M. Speranza1 , A. R. Taddei2 , E. Ovidi2
  • 1Dipartimento di Biologia ES, Università di Bologna, via Irnerio, 42, 40126 Bologna, Italy
  • 2CIME, Università della Tuscia, Largo dell'Università, snc, 01100 Viterbo, Italy
Further Information

Publication History

Received: December 19, 2006

Accepted: February 24, 2007

Publication Date:
12 June 2007 (online)


In vitro toxicity of the antimicrobial peptides (AMPs) magainin 1 and 2 to a higher plant organism, i.e., the bicellular male gametophyte of Actinidia deliciosa (kiwifruit), is investigated. Heavy damage to the plasma membrane, the primary cellular target of the peptides, was rapidly induced: in as few as 15 min, from 70 to nearly 100 % of pollen grains were rendered unviable by 20 µM magainin 1 or 2, respectively. Therefore, kiwifruit pollen sensitivity to natural magainins seemed to be higher if compared to the sensitivity of other pollen species towards magainin 2 amide or synthetic magainin analogues. Strong dose-dependent inhibitory effects on kiwifruit pollen performance were registered: as for magainin 1, the EC50 at 120 min varied from 14.0 (germination) to 15.8 µM (tube elongation). The inhibitory effect was much greater when administering magainin 1 to elongating tubes rather than to ungerminated pollen grains. The two peptides differentially affected kiwifruit pollen, in line with the previously documented greater activity of magainin 2 in other cell systems. Furthermore, 20 µM magainin 1-treated pollen grains took on a shrivelled shape within 30 min of incubation, an increasingly widespread effect with higher peptide concentration. At the ultrastructural level, both protoplast shrinkage and striking organelle alterations were evident, including chromatin condensation, swelling and loss of mitochondrial cristae, dilation of rough endoplasmic reticulum cisternae, and vacuolization of cytoplasm. To our knowledge, similar alterations in animal or plant cells treated with AMPs have not been described yet.


  • 1 Alan A. R.. Utilization of lytic peptide and avirulence genes for developing plant with broad spectrum disease resistance. PhD Thesis, Cornell University, Ithaca, NY. (2001)
  • 2 Alan A. R., Blowers A., Earle E. D.. Expression of a magainin-type antimicrobial peptide gene (MSI‐99) in tomato enhances resistance to bacterial speck disease.  Plant Cell Reports. (2004);  22 388-396
  • 3 Antognoni F., Ovidi E., Taddei A. R., Gambellini G., Speranza A.. In vitro pollen tube growth reveals cytotoxic potential of the flavonols, quercetin and rutin.  ATLA - Alternatives to Laboratory Animals. (2004);  32 79-90
  • 4 van Baarlen P.. Induction of programmed cell death in lily by the fungal pathogen Botrytis helliptica.  Molecular Plant Pathology. (2004);  5 559-574
  • 5 Buckner B., Johal G. S., Janick-Buckner D.. Cell death in maize.  Physiologia Plantarum. (2000);  108 231-239
  • 6 Chakrabarti A., Ganapathi T. R., Mukherjee P. K.. MSI‐99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana.  Planta. (2003);  216 587-596
  • 7 Cruciani R. A., Barker J. L., Durell S. R., Raghunathan G., Guy H. R., Zasloff M., Stanley E. F.. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes.  European Journal of Pharmacology. (1992);  226 287-296
  • 8 Cruz-Chamorro L., Puertollano M. A., Puertollano E., de Cienfuegos G. A., de Pablo M. A.. In vitro biological activities of magainin alone or in combination with nisin.  Peptides. (2006);  27 1201-1209
  • 9 Curtis M. J., Wolpert T. J.. The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity.  The Plant Journal. (2004);  38 244-255
  • 10 DeGray G., Rajasekaran K., Smith F., Sanford J., Daniell H.. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi.  Plant Physiology. (2001);  127 852-862
  • 11 Everett N. P.. Design of antifungal peptides for agricultural applications. Hedin, P. A., Menn, J. J., and Hollingworth, R. M., eds. Natural and Enginereed Pest Management Agents. Washington, D.C.; American Chemical Society (1994): 278-291
  • 12 Fukuda H.. Programmed cell death of tracheary elements as a paradigm in plants.  Plant Molecular Biology. (2000);  44 245-253
  • 13 Geitmann A.. Cell death of self-incompatible pollen tubes: necrosis or apoptosis?. Cresti, M., Cai, G., and Moscatelli, A., eds. Fertilization in Higher Plants: Molecular and Cytological Aspects. Berlin, Heidelberg; Springer (1999): 113-137
  • 14 Geitmann A., Frankling-Tong V. E., Emons A. C.. The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles.  Cell Death and Differentiation. (2004);  11 812-822
  • 15 Haukland H. H., Ulvatne H., Sandvik K., Vorland L. H.. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm.  FEBS Letters. (2001);  508 389-393
  • 16 Helmerhorst E. J., Reijnders I. M., van't Hof W., Veerman C. I., Nieuw Amerongen A. V.. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides.  FEBS Letters. (1999);  449 105-110
  • 17 Heslop-Harrison J., Heslop-Harrison Y.. Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate.  Stain Technology. (1970);  45 115-120
  • 18 Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. B.. Phylogenetic perspectives in innate immunity.  Science. (1999);  284 1313-1318
  • 19 Huang H. W.. Action of antimicrobial peptides: two-state model.  Biochemistry. (2000);  39 8347-8352
  • 20 Korostoff J., Yamaguchi N., Miller M., Kieba I., Lally E. T.. Perturbation of mitochondrial structure and function plays a central role in Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis.  Microbial Pathogenesis. (2000);  29 267-278
  • 21 Jacobi V., Plourde A., Charest P. J., Hamelin R. C.. In vitro toxicity of natural and designed peptides to tree pathogens and pollen.  Canadian Journal of Botany. (2000);  78 455-461
  • 22 Kristen U.. Main features of basal toxicity: sites of toxic action and interaction in the pollen tube cell.  ATLA - Alternatives to Laboratory Animals. (1996);  24 429-434
  • 23 Kristen U.. Use of higher plants as screen for toxicity assessment.  Toxicology In Vitro. (1997);  11 181-191
  • 24 Kristyanne E. S., Kim K. S., Stewart  Mc.D. J.. Magainin 2 effects on the ultrastructure of five plant pathogens.  Mycologia. (1997);  89 353-360
  • 25 Lee M. T., Chen F. Y., Huang H. W.. Energetics of pore formation induced by membrane active peptides.  Biochemistry. (2004);  43 3590-3599
  • 26 Li Q. Q., Lawrence C. B., Xing H.-Y., Babbit R. A., Bass W. T., Maiti I. B., Everett N. P.. Enhanced resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco.  Planta. (2001);  212 635-639
  • 27 Matsuzaki K.. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes.  Biochimica and Biophysica Acta. (1999);  1462 1-10
  • 28 Mills D., Hammerschlag F. A.. Effect of cecropin B on peach pathogens, protoplasts, and cells.  Plant Science. (1993);  93 143-150
  • 29 Nordeen R. O., Sinden S. L., Jaynes J. M., Owens L. O.. Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens.  Plant Science. (1992);  82 101-107
  • 30 O'Callaghan M., Gerard E. M., Waipara N. W., Young S. D., Glare T. R., Barrell P. J., Conner A. J.. Microbial communities of Solanum tuberosum and magainin-producing transgenic lines.  Plant and Soil. (2004);  266 47-56
  • 31 Oard S. V., Enright F. M.. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi.  Plant Cell Reports. (2006);  25 561-572
  • 32 Powell W. A., Catranis C. M., Maynard C. A.. Synthetic antimicrobial peptide design.  Molecular Plant-Microbe Interactions. (1995);  8 792-794
  • 33 Speranza A., Scoccianti V., Crinelli R., Calzoni G. L., Magnani M.. Inhibition of proteasome activity strongly affects kiwifruit pollen germination. Involvement of the ubiquitin-proteasome pathway as a major regulator.  Plant Physiology. (2001);  126 1150-1161
  • 34 Speranza A., Ferri P., Battistelli M., Falcieri E., Crinelli R., Scoccianti V.. Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen.  Chemosphere. (2007);  66 1165-1174
  • 35 Takeshima K., Chikushi A., Lee K.-K., Yonehara S., Matsuzaki K.. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes.  Journal of Biological Chemistry. (2003);  278 1310-1315
  • 36 Taylor L. P., Hepler P. K.. Pollen germination and tube growth.  Annual Review of Plant Physiology. (1997);  48 461-491
  • 37 Vidal J. R., Kikkert J. R., Malnoy M. A., Wallace P. G., Barnard J., Reisch B. I.. Evaluation of transgenic “Chardonnay” (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew.  Transgenic Research. (2006);  15 69-82
  • 38 Xing H., Lawrence C. B., Chambers O., Davies H. M., Everett N. P., Li Q. Q.. Increased pathogen resistance and yield in transgenic plant expressing combination of the modified antimicrobial peptides based on indolicidin and magainin.  Planta. (2006);  223 1024-1032
  • 39 Yevtushenko D. P., Romero R., Forward B. S., Hancock R. E., Kay W. W., and Misra S.. Pathogen-induced expression of cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco.  Journal of Experimental Botany. (2005);  56 1685-1695
  • 40 Zasloff M.. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.  Proceedings of the National Academy of Sciences of the USA. (1987);  84 5449-5453
  • 41 Zasloff M.. Antimicrobial peptides of multicellular organisms.  Nature. (2002);  415 389-395

A. M. Speranza

Dipartimento di Biologia ES
Università di Bologna

via Irnerio, 42

40126 Bologna



Editor: C. M. J. Pieterse