Plant Biol (Stuttg) 2007; 9: e60-e68
DOI: 10.1055/s-2007-965043
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Cut-Induced VOC Emissions from Agricultural Grasslands

B. Davison1 , A. Brunner2 , C. Ammann2 , C. Spirig2 , M. Jocher2 , A. Neftel2
  • 1Department of Environmental Sciences, Lancaster University, Lancaster LA1 4YQ, UK
  • 2Agroscope ART, Federal Research Institute, Zurich, Switzerland
Further Information

Publication History

Received: October 31, 2006

Accepted: January 29, 2007

Publication Date:
31 May 2007 (online)

Abstract

The introduction of proton transfer reaction mass spectrometry (PTR‐MS) for fast response measurements of volatile organic compounds (VOC) has enabled the use of eddy covariance methods to investigate VOC fluxes on the ecosystem scale. In this study PTR‐MS flux measurements of VOC were performed over agricultural grassland during and after a cut event. Selected masses detected by the PTR‐MS showed fluxes of methanol, acetaldehyde, and acetone. They were highest directly after cutting and during the hay drying phase. Simultaneously, significant fluxes of protonated ion masses 73, 81, and 83 were observed. Due to the limited identification of compounds with the PTR‐MS technique, GC‐MS and GC‐FID‐PTR‐MS techniques were additionally applied. In this way, ion mass 73 could be identified as 2-butanone, mass 81 mainly as (Z)-3-hexenal, and mass 83 mainly as the sum of (Z)-3-hexenol and hexenyl acetates. Hexenal, hexenols, and the hexenyl acetates are mostly related to plant wounding during cutting. It was found that legume plants and forbs emit a higher number of different VOC species than graminoids.

References

  • 1 Ammann C., Flechard C., Fuhrer J., Neftel A.. Greenhouse gas budget of intensively and extensively managed grassland. Lüscher, A. et al., eds. Land Use Systems in Grassland Dominated Regions, Grassland Science in Europe, Vol. 9. Zürich, Switzerland; vdf Hochschulverlag (2004 a): 130-132
  • 2 Ammann C., Spirig C., Neftel A., Steinbacher M., Komenda M., Schaub A.. Application of PTR‐MS for measurements of biogenic VOC in a deciduous forest.  International Journal of Mass Spectrometry. (2004 b);  239 87-101
  • 3 Ammann C., Brunner A., Spirig C., Neftel A.. Technical note: water vapour concentration and flux measurements with PTR‐MS.  Atmospheric Chemistry and Physics. (2006);  6 4643-4651
  • 4 Ammann C., Flechard C., Leifeld J., Neftel A., Fuhrer J.. The carbon budget of newly established temperate grassland depends on management intensity.  Agriculture, Ecosystems and Environment. (2007);  DOI: 10.1016/j.agee.2006.12.002
  • 5 Arey J., Winer A. M., Atkinson R., Aschmann S. M., Long W. D., Morrison C. L.. The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant-species.  Atmospheric Environment Part A – General Topics. (1991);  25 1063-1075
  • 6 Bermejo V., Gimeno B. S., Sanz J., de la Torre D., Gil J. M.. Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury.  Atmospheric Environment. (2003);  37 4667-4677
  • 8 Chen F., Tholl D., D'Auria J. C., Farooq A., Pichersky E., Gershenzon J.. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers.  Plant Cell. (2003);  15 481-494
  • 9 Cojocariu C., Escher P., Haberle K. H., Matyssek R., Rennenberg H., Kreuzwieser J.. The effect of ozone on the emission of carbonyls from leaves of adult Fagus sylvatica.  Plant, Cell and Environment. (2005);  28 603-611
  • 10 De Gouw J. A., Howard C. J., Custer T. G., Baker B. M., Fall R.. Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process.  Geophysical Research Letters. (1999);  26 811-814
  • 11 Ehhalt D., Prather M., Dentener F., Derwent R., Dlugokencky E.. The Third Assessment Report on Climate Change. Cambridge, UK; Cambridge University Press (2001)
  • 12 Fall R.. Biogenic emissions of volatile organic compounds from higher plants. Hewitt, C. N., ed. Reactive Hydrocarbons in the Atmosphere. San Diego; Academic Press (1999): 43-91
  • 13 Fall R.. Abundant oxygenates in the atmosphere: a biochemical perspective.  Chemical Reviews. (2003);  103 4941-4951
  • 14 Feussner I., Wasternack C.. The lipoxygenase pathway.  Annual Review of Plant Biology. (2002);  53 275-297
  • 15 Flechard C. R., Neftel A., Jocher M., Ammann C., Fuhrer J.. Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices.  Global Change Biology. (2005);  11 2114-2127
  • 16 Galbally I. E., Kirstine W.. The production of methanol by flowering plants and the global cycle of methanol.  Journal of Atmospheric Chemistry. (2002);  43 195-229
  • 17 Graus M., Schnitzler J. P., Hansel A., Cojocariu C., Rennenberg H., Wisthaler A., Kreuzwieser J.. Transient release of oxygenated volatile organic compounds during light-dark transitions in grey poplar leaves.  Plant Physiology. (2004);  135 1967-1975
  • 18 Guenther A., Zimmerman P., Wildermuth M.. Natural volatile organic-compound emission rate estimates for United-States woodland landscapes.  Atmospheric Environment. (1994);  28 1197-1210
  • 19 Guenther A., Hewitt C. N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman P.. A global-model of natural volatile organic-compound emissions.  Journal of Geophysical Research – Atmospheres. (1995);  100 8873-8892
  • 20 Hatanaka A.. The biogeneration of green odor by green leaves.  Phytochemistry. (1993);  34 1201-1218
  • 21 Karl T., Guenther A., Jordan A., Fall R., Lindinger W.. Eddy covariance measurements of biogenic oxygenated VOC emissions from hay harvesting.  Atmospheric Environment. (2001 a);  35 491-495
  • 22 Karl T., Guenther A., Lindinger C., Jordan A., Fall R., Lindinger W.. Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer.  Journal of Geophysical Research. (2001 b);  106 24157-24167
  • 23 Kesselmeier J., Staudt M.. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.  Journal of Atmospheric Chemistry. (1999);  22 23-88
  • 24 Kirstine W., Galbally I., Ye Y., Hooper M.. Emissions of volatile organic compounds (primarily oxygenated species) from pasture.  Journal of Geophysical Research. (1998);  106 10605-10619
  • 25 Kormann R., Meixner F. X.. An analytical footprint model for non-neutral stratification.  Boundary-Layer Meteorology. (2001);  99 207-224
  • 26 Kozlowski T. T., Pallardy S. G.. Acclimation and adaptive responses of woody plants to environmental stresses.  Botanical Review. (2002);  68 270-334
  • 27 Kreuzwieser J., Harren F. J. M., Laarhoven L. J. J., Boamfa I., te Lintel-Hekkert S., Scheerer U., Huglin C., Rennenberg H.. Acetaldehyde emission by the leaves of trees – correlation with physiological and environmental parameters.  Physiologia Plantarum. (2001);  113 41-49
  • 28 Lindinger W., Hansel A., Jordan A.. On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR‐MS) medical applications, food control and environmental research.  International Journal of Mass Spectrometry and Ion Processes. (1998);  173 191-241
  • 29 Loreto F., Barta C., Brilli F., Nogues I.. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.  Plant, Cell and Environment,. (2006);  29 1820-1828
  • 31 Noordermeer M. A., Feussner I., Kolbe A., Veldink G. A., Vliegenthart J. F. G.. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.  Biochemical and Biophysical Research Communications. (2000);  277 112-116
  • 32 Schade G. W., Goldstein A. H.. Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation.  Journal of Geophysical Research – Atmospheres. (2001);  106 3111-3123
  • 33 Singh H., Chen Y., Staudt A., Jacob D., Blake D., Heikes B., Snow J.. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds.  Nature. (2001);  410 1078-1081
  • 34 Spirig C., Neftel A., Ammann C., Dommen J., Grabmer W., Thielmann A., Schaub A., Beauchamp J., Wisthaler A., Hansel A.. Eddy covariances flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry.  Atmopheric Chemistry and Physics. (2005);  5 465-481
  • 35 Warneke C., Luxembourg S. L., de Gouw J. A., Rinne H. J. I., Guenther A. B., Fall R.. Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting.  Journal of Geophysical Research. (2002);  107 (D8) DOI: 10.1029/2001JD000594

B. Davison

Department of Environmental Sciences
Lancaster University

Lancaster LA1 4YQ

UK

Email: b.davison@lancaster.ac.uk

Guest Editor: F. Loreto

    >