Plant Biol (Stuttg) 2007; 9: e42-e59
DOI: 10.1055/s-2007-964975
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Modeling Volatile Isoprenoid Emissions – A Story with Split Ends

R. Grote1 , Ü. Niinemets2 , 3
  • 1Research Center Karlsruhe GmbH, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK‐IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
  • 2Department of Plant Physiology, University of Tartu, Riia 23, Tartu 51010, Estonia
  • 3Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 64, Tartu 51014, Estonia
Further Information

Publication History

Received: October 31, 2006

Accepted: January 24, 2007

Publication Date:
04 April 2007 (online)

Abstract

Accurate prediction of plant-generated volatile isoprenoid fluxes is necessary for reliable estimation of atmospheric ozone and aerosol formation potentials. In recent years, significant progress has been made in understanding the environmental and physiological controls on isoprenoid emission and in scaling these emissions to canopy and landscape levels. We summarize recent developments and compare different approaches for simulating volatile isoprenoid emission and scaling up to whole forest canopies with complex architecture. We show that the current developments in modeling volatile isoprenoid emissions are “split-ended” with simultaneous but separated efforts in fine-tuning the empirical emission algorithms and in constructing process-based models. In modeling volatile isoprenoid emissions, simplified leaf-level emission algorithms (Guenther algorithms) are highly successful, particularly after scaling these models up to whole regions, where the influences of different ecosystem types, ontogenetic stages, and variations in environmental conditions on emission rates and dynamics partly cancel out. However, recent experimental evidence indicates important environmental effects yet unconsidered and emphasize, the importance of a highly dynamic plant acclimation in space and time. This suggests that current parameterizations are unlikely to hold in a globally changing and dynamic environment. Therefore, long-term predictions using empirical algorithms are not necessarily reliable. We show that process-based models have large potential to capture the influence of changing environmental conditions, in particular if the leaf models are linked with physiologically based whole-plant models. This combination is also promising in considering the possible feedback impacts of emissions on plant physiological status such as mitigation of thermal and oxidative stresses by volatile isoprenoids. It might be further worth while to incorporate main features of these approaches in regional empirically-based emission estimations thereby merging the “split ends”.

References

  • 1 Affek H. P., Yakir D.. Protection by isoprene against singlet oxygen in leaves.  Plant Physiology. (2002);  129 269-277
  • 2 Arneth A., Niinemets Ü., Pressley S., Bäck J., Hari P., Karl T., Noe S., Prentice I. C., Serca D., Hickler T., Wolf A., Smith B.. Process-based estimates of terrestrial ecosystem isoprene emissions.  Atmospheric Chemistry and Physics Discussions. (2006);  6 8011-8068
  • 3 Bai J., Baker B., Liang B., Greenberg J., Guenther A.. Isoprene and monoterpene emissions from an Inner Mongolia grassland.  Atmospheric Environment. (2006);  40 5753-5758
  • 4 Baldocchi D. D., Fuentes J. D., Bowling D. R., Turnipseed A. A., Monson R. K.. Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest.  Journal of Applied Meteorology. (1999);  38 885-898
  • 5 Baldocchi D. D., Wilson K. B., Gu L.. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest – an assessment with the biophysical model CANOAK.  Tree Physiology. (2002);  22 1065-1077
  • 6 Baraldi R., Rapparini F., Oechel W. C., Hastings S. J., Bryant P., Cheng Y., Miglietta F.. Monoterpene emission responses to elevated CO2 in a Mediterranean-type ecosystem.  New Phytologist. (2004);  161 17-21
  • 7 Bäck J., Hari P., Hakola H., Juurola E., Kulmala M.. Dynamics of monoterpene emissions in Pinus sylvestris during early spring.  Boreal Environmental Research. (2005);  10 409-424
  • 8 Bell M., Ellis J. E.. Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region.  Atmospheric Environment. (2004);  38 1879-1889
  • 9 Bertin N., Staudt M.. Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees.  Oecologia. (1996);  107 456-462
  • 10 Bertin N., Staudt M., Hansen U., Seufert G., Ciccioli P., Foster P., Fugit J. L., Torres L.. Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions – application of light and temperature algorithms.  Atmospheric Environment. (1997);  31 135-144
  • 11 Blande J. D., Tiiva P., Freiwald V., Oksanen E., Holopainen J. K.. The effects of herbivore damage and elevated ozone concentration on the volatile terpenoids produced by two hybrid aspen (Populus tremula × tremuloides) clones. Vienna, Austria, XVII International Botanical Congress, 17-7-2005. (2005): 544
  • 12 Boissard C., Cao X. L., Juan C. Y., Hewitt C. N., Gallagher M.. Seasonal variations in VOC emission rates from gorse (Ulex europaeus).  Atmospheric Environment. (2001);  35 917-927
  • 13 Bonn B., Lawrence M. G.. Influence of biogenic secondary organic aerosol formation approaches on atmospheric chemistry.  Journal of Atmospheric Chemistry. (2005);  51 235-270
  • 14 Brüggemann N., Schnitzler J.-P.. Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings.  Plant Biology. (2002);  4 456-463
  • 15 Buckley P. T.. Isoprene emissions from a Florida scrub oak species grown in ambient and elevated carbon dioxide.  Atmospheric Environment. (2001);  35 631-634
  • 16 Calogirou A., Larsen B. R., Brussol C., Duane M., Kotzias D.. Decomposition of terpenes by ozone during sampling on tenax.  Analytical Chemistry. (1996);  68 1499-1506
  • 17 Centritto M., Di Bella C., Baraldi R., Rapparini F., Beget M. E., Kemerer A., Loreto F., Rebella C.. Isoprenoid emissions from three Nothofagus species in Patagonia, Argentina. XVII International Botanical Congress, Vienna, Austria, 17-7-2005. (2005): 554
  • 18 Centritto M., Nascetti P., Petrilli L., Raschi A., Loreto F.. Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment.  Plant, Cell and Environment. (2004);  27 403-412
  • 19 Ciccioli P., Brancaleoni E., Frattoni M., Marta S., Brachetti A., Vitullo M., Tirone G., Valentini R.. Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry.  Journal of Chromatography A. (2003);  985 283-296
  • 20 Ciccioli P., Fabozzi C., Brancaleoni E., Cecinato A., Frattoni M., Cieslik S., Kotzias D., Seufert G., Foster P., Steinbrecher R.. Biogenic emission from the Mediterranean pseudosteppe ecosystem present in Castelporziano.  Atmospheric Environment. (1997);  31 167-175
  • 21 Collins W., Derwent R. G., Johnson C. E., Stevenson D. S.. The oxidation of organic compounds in the troposphere and their global warming potentials.  Climatic Change. (2004);  52 453-479
  • 22 Copolovici L. O., Filella I., Llusia J., Niinemets Ü., Peñuelas J.. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex.  Plant Physiology. (2005);  139 485-496
  • 23 Copolovici L. O., Niinemets Ü.. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.  Chemosphere. (2005);  61 1390-1400
  • 24 Cortinovis J., Solmon F., Serca D., Sarrat C., Rosset R.. A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes.  Atmospheric Chemistry and Physics. (2005);  5 1915-1929
  • 25 Dindorf T., Kuhn U., Ganzeveld L., Schebeske G., Ciccioli P., Holzke C., Köble R., Seufert G., Kesselmeier J.. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget.  Journal of Geophysical Research. (2006);  111 DOI: 10.1029/2005JD006751
  • 26 Eisenreich W., Schwarz M., Cartayrade A., Arigoni D., Zenk M. H., Bacher A.. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms.  Chemistry and Biology. (1998);  5 221-233
  • 27 Evans J. H., Farquhar G. D.. Modeling canopy photosynthesis from the biochemistry of the C3 chloroplast. Boote, K. J. and Loomis, R. S., eds. Modeling Crop Photosynthesis – From Biochemistry to Canopy. Madison, WI; Crop Science Society of America (1991): 1-15
  • 28 Evans R. C., Tingey D. T., Gumpertz M. L.. Estimates of isoprene and monoterpene emission rates in plants.  Botanical Gazette. (1982);  143 304-310
  • 29 Falge E., Tenhunen J. D., Ryel R., Alsheimer M., Köstner B.. Modelling age- and density-related gas exchange of Picea abies canopies in the Fichtelgebirge, Germany.  Annals of Forest Science. (2000);  57 229-243
  • 30 Fall R., Wildermuth M. C.. Isoprene synthase: from biochemical mechanism to emission algorithm.  Journal of Geophysical Research. (1998);  103 25599-25610
  • 31 Fang C., Monson R. K., Cowling E. B.. Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles.  Tree Physiology. (1996);  16 441-446
  • 32 Farquhar G. D., von Caemmerer S., Berry J. A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 33 Fehsenfeld F. C., Calvert J. G., Fall R., Goldan P., Guenther A. B., Hewitt C. N., Lamb B., Liu S., Trainer M., Westberg H., Zimmerman P.. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry.  Global Biogeochemical Cycles. (1992);  6 389-430
  • 34 Fischbach R. J., Staudt M., Zimmer I., Rambal S., Schnitzler J.-P.. Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex.  Physiologia Plantarum. (2002);  114 354-360
  • 35 Fischbach R. J., Zimmer I., Steinbrecher R., Pfichner A., Schnitzler J.-P.. Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L.  Phytochemistry. (2000);  54 257-265
  • 36 Flügge U.-I., Gao W.. Transport of isoprenoid intermediates across chloroplast envelope membranes.  Plant Biology. (2005);  7 91-97
  • 37 Forkel R., Knoche R.. Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model.  Journal of Geophysical Research. (2006);  111 DOI: 10.1029/2005JD006748
  • 38 Fuentes J. D., Lerdau M., Atkinson R., Baldocchi D., Bottenheim J. W., Ciccioli P., Lamb B., Geron C., Gu L., Guenther A., Sharkey T. D., Stockwell W.. Biogenic hydrocarbons in the atmosphere boundary layer: a review.  Bulletin of the American Meteorological Society. (2000);  81 1537-1575
  • 39 Fuentes J. D., Wang D.. On the seasonality of isoprene emissions from a mixed temperate forest.  Ecological Applications. (1999);  9 1118-1131
  • 40 Fuentes J. D., Wang D., Den Hartog G., Neumann H. H., Dann T. F., Puckett K. J.. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest.  Atmospheric Environment. (1995);  29 3003-3017
  • 41 Fuentes J. D., Wang D., Gu L.. Seasonal variations in isoprene emissions from a Boreal aspen forest.  Journal of Applied Meteorology. (1999);  38 855-870
  • 42 Funk J. L., Jones C. G., Gray D. W., Throop H. L., Hyatt L. A., Lerdau M. T.. Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes.  Journal of Geophysical Research. (2005);  110 DOI: 10.1029/2004JD005229
  • 43 Funk J. L., Jones C. G., Lerdau M. T.. Defoliation effects on isoprene emission from Populus deltoides.  Oecologia. (1999);  118 333-339
  • 44 Funk J. L., Mak J. E., Lerdau M. T.. Stress-induced changes in carbon sources for isoprene production in Populus deltoides.  Plant, Cell and Environment. (2004);  27 747-755
  • 45 Gay D.. A natural hydrocarbon emission inventory using a simple forest canopy model. PhD Thesis, Washington State University, Pullman. (1987)
  • 46 Geron C., Guenther A., Greenberg J.. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US.  Atmospheric Environment. (2006 a);  40 1645-1660
  • 47 Geron C., Guenther A., Greenberg J., Loescher H. W., Clark D., Baker B.. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica.  Atmospheric Environment. (2002);  36 3793-3802
  • 48 Geron C. D., Guenther A. B., Pierce T. E.. An improved model for estimating volatile organic compound emissions from forests in the eastern United States.  Journal of Geophysical Research. (1994);  99 12773-12791
  • 49 Geron C., Guenther A., Sharkey T., Arnts R. R.. Temporal variability in basal isoprene emission factor.  Tree Physiology. (2000);  20 799-805
  • 50 Geron C. D., Nie D., Arnts R. R., Sharkey T. D., Singsaas E. L., Vanderveer P. J., Guenther A., Sickles II., J. E., Kleindienst T. E.. Biogenic isoprene emission: model evaluation in a southeastern United States bottomland deciduous forest.  Journal of Geophysical Research. (1997);  102 18903-18916
  • 51 Geron C., Owen S., Guenther A., Greenberg J., Rasmussen R., Bai J. H., Li Q.-J., Baker B.. Volatile organic compounds from vegetation in southern Yunnan Province, China: emission rates and some potential regional implications.  Atmospheric Environment. (2006 b);  40 1759-1773
  • 52 Geron C., Pierce T., Guenther A.. Reassessment of biogenic volatile organic compound emissions in the Atlanta area.  Atmospheric Environment. (1995);  29 1569-1578
  • 53 Goldstein A. H., Goulden M. L., Munger J., William J., Wofsy S. C., Geron C. D.. Seasonal course of isoprene emissions from a midlatitude deciduous forest.  Journal of Geophysical Research. (1998);  103 31045-31056
  • 54 Grell G. A., Emeis S., Stockwell W. R., Schoenemeyer T., Forkel R., Michalakes J., Knoche R., Seidl W.. Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign.  Atmospheric Environment. (2000);  34 1435-1453
  • 55 Grell G. A., Peckham S. E., Schmitz R., McKeen S. A., Frost G., Skamarock W. C., Eder B.. Fully coupled “online” chemistry within the WRF model.  Atmospheric Environment. (2005);  39 6957-6975
  • 56 Grinspoon J., Bowman W. D., Fall R.. Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves.  Plant Physiology. (1991);  97 170-174
  • 57 Grote R.. Sensitivity of volatile monoterpene emission to changes in canopy structure – a model based exercise with a process-based emission model.  New Phytologist. (2006);  DOI: 10.1111/j.1469-8137.2006.01946.x
  • 58 Grote R., Mayrhofer S., Fischbach R. J., Steinbrecher R., Staudt M., Schnitzler J.-P.. Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.).  Atmospheric Environment. (2006);  40 152-165
  • 59 Grote R., Reiter I. M.. Competition-dependent modelling of foliage biomass in forest stands.  Trees – Structure and Function. (2004);  18 596-607
  • 60 Guenther A.. Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development.  Journal of Geophysical Research. (1991);  96 10799-10808
  • 61 Guenther A.. Seasonal and spatial variations in natural volatile organic compound emissions.  Ecological Applications. (1997);  7 34-45
  • 62 Guenther A.. Modeling biogenic volatile organic compound emissions to the atmosphere. Hewitt, C. N., ed. Reactive Hydrocarbons in the Atmosphere. San Diego; Academic Press (1999): 41-94
  • 63 Guenther A., Archer S., Greenberg J., Harley P., Helmig D., Klinger L., Vierling L., Wildermuth M., Zimmermann P., Zitzer S.. Biogenic hydrocarbon emissions and landcover/climate change in a subtropical savanna.  Physics and Chemistry of the Earth. (1999);  24 659-667
  • 64 Guenther A., Hewitt C. N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman P.. A global model of natural volatile organic compound emissions.  Journal of Geophysical Research. (1995);  100 8873-8892
  • 65 Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P. I., Geron C.. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).  Atmospheric Chemistry and Physics. (2006);  6 3181-3210
  • 66 Guenther A., Otter L., Zimmerman P., Greenberg J., Scholes R., Scholes M.. Biogenic hydrocarbon emissions from southern Africa savannas.  Journal of Geophysical Research. (1996);  101 25859-25865
  • 67 Guenther A., Zimmerman P., Harley P., Monson R., Fall R.. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis.  Journal of Geophysical Research. (1993);  98 12609-12617
  • 68 Guenther A., Zimmerman P., Wildermuth M.. Natural volatile organic compound emission rate estimates for U.S. woodland landscapes.  Atmospheric Environment. (1994);  28 1197-1210
  • 69 Gulden L., Yang Z.-L.. Development of species-based, regional emission capacities for simulation of biogenic volatile organic compound emissions in land-surface models: an example from Texas, USA.  Atmospheric Environment. (2006);  40 1464-1479
  • 70 Hakola H., Rinne J., Laurila T.. The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and european aspen (Populus tremula).  Atmospheric Environment. (1998);  32 1825-1833
  • 71 Hanson D. T., Sharkey T. D.. Rate of acclimation of the capacity for isoprene emission in response to light and temperature.  Plant, Cell and Environment. (2001);  24 937-946
  • 72 Hari P., Mäkelä A.. Annual pattern of photosynthesis in Scots pine in the boreal zone.  Tree Physiology. (2003);  23 145-155
  • 73 Harley P., Guenther A., Zimmerman P.. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves.  Tree Physiology. (1996);  16 25-32
  • 74 Harley P. C., Litvak M. E., Sharkey T. D.. Isoprene emission from velvet bean leaves. Interactions among nitrogen availability, growth photon flux density and leaf development.  Plant Physiology. (1994);  105 279-285
  • 75 Harley P. C., Thomas R. B., Reynolds J. F., Strain B. R.. Modelling photosynthesis of cotton grown in elevated CO2.  Plant, Cell and Environment. (1992);  15 271-282
  • 76 Harley P., Vasconcellos P., Vierling L., Pinheiro C. C. D. S., Greenberg J., Guenther A., Klinger L., De Almeida S. S., Neill D., Baker T., Phillips O., Malhi Y.. Variation in potential for isoprene emissions among Neotropical forest sites.  Global Change Biology. (2004);  10 630-650
  • 77 Helmig D., Ortega J., Guenther A., Herrick J. D., Geron C.. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US.  Atmospheric Environment. (2006);  40 4150-4157
  • 78 Holzinger R., Lee A., McKay M., Goldstein A. H.. Seasonal variability of monoterpene emission factors for a Ponderosa pine plantation in California.  Atmospheric Chemistry and Physics. (2006);  6 1267-1274
  • 79 Holzke C., Hoffmann T., Jaeger L., Koppmann R., Zimmer W.. Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots pine (Pinus sylvestris L.).  Atmospheric Environment. (2006);  40 3174-3185
  • 80 Huber L., Laville P., Fuentes J. D.. Uncertainties in isoprene emissions from a mixed deciduous forest estimated using a canopy microclimate model.  Journal of Applied Meteorology. (1999);  38 899-912
  • 81 Ishii H., Ford E. D., Boscolo M. E., Manriquez C. A., Wilson M. E., Hinckley T. M.. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production.  Tree Physiology. (2002);  22 31-40
  • 82 Jasoni R., Kane C., Green C., Peffley E., Tissue D., Thompson L., Payton P., Pare P. W.. Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions.  Environmental and Experimental Botany. (2004);  51 273-280
  • 83 Karl T., Guenther A., Spirig C., Hansel A., Fall R.. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan.  Geophysical Research Letters. (2003);  30 2186 DOI: 10.1029/2003GL018432
  • 84 Karl T., Potosnak M., Guenther A., Clark D., Walker J., Herrick J. D., Geron C.. Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation.  Journal of Geophysical Research-Atmospheres. (2004);  109 DOI: 10.1029/2004JD004738
  • 85 Kempf K., Allwine E., Westberg H., Claiborn C., Lamb B.. Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods.  Atmospheric Environment. (1996);  30 1381-1389
  • 86 Kesselmeier J.. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies.  Journal of Atmopsheric Chemistry. (2001);  39 219-233
  • 87 Kesselmeier J., Staudt M.. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.  Journal of Atmospheric Chemistry. (1999);  33 23-88
  • 88 Kim J. C., Kim K. J., Kim D. S., Han J. S.. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea.  Chemosphere. (2005);  59 1685-1696
  • 89 Kirschbaum M. U. F., Küppers M., Schneider H., Giersch C., Noe S.. Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates.  Planta. (1998);  204 16-26
  • 90 Kreuzwieser J., Rennenberg H., Steinbrecher R.. Impact of short-term and long-term elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus trees.  Environmental Pollution. (2006);  142 246-253
  • 91 Kucharik C. J., Norman J. M., Gower S. T.. Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach.  Tree Physiology. (1999);  19 695-706
  • 92 Kuhn U., Rottenberger S., Biesenthal T., Wolf A., Schebeske G., Ciccioli P., Brancaleoni E., Frattoni M., Tavares T. M., Kesselmeier J.. Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species.  Global Change Biology. (2004 a);  10 663-682
  • 93 Kuhn U., Rottenberger S., Biesenthal T., Wolf A., Schebeske G., Ciccioli P., Kesselmeier J.. Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development.  Plant, Cell and Environment. (2004 b);  27 1469-1485
  • 94 Kulmala M., Suni T., Lehtinen K. E. J., Dal Maso M., Boy M., Reissell A., Rannik Ü., Aalto P., Keronen P., Hakola H., Bäck J., Hoffmann T., Vesala T., Hari P.. A new feedback mechanism linking forests, aerosols, and climate.  Atmospheric Chemistry and Physics. (2004);  4 557-562
  • 95 Kuzma J., Fall R.. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase.  Plant Physiology. (1993);  101 435-440
  • 96 Lamb B., Gay D., Westberg H., Pierce T.. A biogenic hydrocarbon emission inventory for the U.S. using a simple forest canopy model.  Atmospheric Environment Part A. (1993);  27 1673-1690
  • 97 Lamb B., Guenther A., Gay D., Westberg H.. A national inventory of biogenic hydrocarbon emissions.  Atmospheric Environment. (1987);  21 1695-1705
  • 98 Lamb B., Thomas P., Baldocchi D., Allwine E., Dilts S., Westberg H., Geron C., Guenther A., Lee K., Harley P., Zimmerman P.. Evaluation of forest canopy models for estimating isoprene emissions.  Journal of Geophysical Research. (1996);  101 22787-22798
  • 99 Larsen D. R., Kershaw J. A.. Influence of canopy structure assumptions on predictions from Beer's law. A comparison of deterministic and stochastic simulations.  Agricultural and Forest Meteorology. (1996);  81 61-77
  • 100 Lathiere J., Hauglustaine D. A., De Noblet-Ducoudre N.. Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model.  Geophysical Research Letters. (2005);  32 DOI: 10.1029/2005GL024164
  • 101 Lathiere J., Hauglustaine D. A., Friend A. D., Noblet-Ducoudre N., Viovy N., Folberth G. A.. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions.  Atmospheric Chemistry and Physics. (2006);  6 2129-2146
  • 102 Lazaridis M., Spyridaki A., Solberg S., Kallos G., Svendby T., Flatoy F., Drossinos I., Housiadas C., Smolik J., Colbeck I., Varinou M., Gofa F., Eleftheriadis K., Zdimal V., Georgopoulos P. G.. Modeling of combined aerosol and photooxidant processes in the Mediterranean area.  Water, Air, and Soil Pollution: Focus. (2004);  4 3-21
  • 103 Lehning A., Zimmer I., Steinbrecher R., Brüggemann N., Schnitzler J. P.. Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves.  Plant, Cell and Environment. (1999);  22 495-504
  • 104 Lehning A., Zimmer W., Zimmer I., Schnitzler J.-P.. Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates.  Journal of Geophysical Research. (2001);  106 3157-3166
  • 105 Lenz R., Selige T., Seufert G.. Scaling up the biogenic emissions from test sites at Castelporziano.  Atmospheric Environment. (1997);  31 239-250
  • 106 Lerdau M., Gray D.. Ecology and evolution of light dependent and light-independent phytogenic volatile organic carbon.  New Phytologist. (2003);  157 199-211
  • 107 Lerdau M., Matson P., Fall R., Monson R.. Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii).  Ecology. (1995);  76 2640-2647
  • 108 Lerdau M., Throop H. L.. Sources of variability in isoprene emission and photosynthesis in two species of tropical wet forest trees.  Biotropica. (2000);  32 670-676
  • 109 Lichtenthaler H. K., Schwender J., Disch A., Rohmer M.. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway.  FEBS Letters. (1997);  400 271-274
  • 110 Lindfors V., Laurila T., Hakola H., Steinbrecher R., Rinne J.. Modeling speciated terpenoid emissions from the European boreal forest.  Atmospheric Environment. (2000);  34 4983-4996
  • 111 Lindfors V., Rinne J., Laurila T.. Upscaling the BIPHOREP Results – Regional Biogenic VOC Emissions in the European Boreal Zone. Laurila, Tuomas and Lindfors, Virpi. 127 – 150. EU Commission. Biogenic VOC emission and photochemistry in the boreal regions – Biphorep. (1999)
  • 112 Litvak M. E., Madronich S., Monson R. K.. Herbivore-induced monoterpene emissions from coniferous forest: potential impact on local tropospheric chemistry.  Ecological Applications. (1999);  9 1147-1159
  • 113 Llusia J., Peñuelas J.. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions.  American Journal of Botany. (2000);  87 133-140
  • 114 Llusia J., Peñuelas J., Gimeno B. S.. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations.  Atmospheric Environment. (2002);  36 3931-3938
  • 115 Loreto F., Ciccioli P., Brancaleoni E., Valentini R., Lillis M. D., Csiky O., Seufert G.. A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy.  Oecologia. (1998 a);  115 302-305
  • 116 Loreto F., Ciccioli P., Cecinato A., Brancaleoni E., Frattoni M., Fabozzi C., Tricoli D.. Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L leaves by C‐13 labeling.  Plant Physiology. (1996);  110 1317-1322
  • 117 Loreto F., Fischbach R. J., Schnitzler J. P., Ciccioli P., Brancaleoni E., Calfapietra C., Seufert G.. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations.  Global Change Biology. (2001 a);  7 709-717
  • 118 Loreto F., Förster A., Dürr M., Csiky O., Seufert G.. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes.  Plant, Cell and Environment. (1998 b);  21 101-107
  • 119 Loreto F., Mannozzi M., Maris C., Nascetti P., Ferranti F., Pasqualini S.. Ozone quenching properties of isoprene and its antioxidant role in leaves.  Plant Physiology. (2001 b);  126 993-1000
  • 120 Loreto F., Pinelli P., Brancaleoni E., Ciccioli P.. 13C labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation.  Plant Physiology. (2004);  135 1903-1907
  • 121 Loreto F., Sharkey T. D.. A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L.  Planta. (1990);  182 523-531
  • 122 Loreto F., Sharkey T. D.. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions.  Planta. (1993);  189 420-424
  • 123 Magel E., Mayrhofer S., Müller A., Zimmer I., Hampp R., Schnitzler J.-P.. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves.  Atmospheric Environment. (2006);  40 138-151
  • 124 Martin D. M., Gershenzon J., Bohlmann J.. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of norway spruce.  Plant Physiology. (2003);  132 1586-1599
  • 125 Martin M. J., Stirling C. M., Humphries S. W., Long S. P.. A process-based model to predict the effects of climatic change on leaf isoprene emission rates.  Ecological Modelling. (2000);  131 161-174
  • 126 Mayrhofer S., Teuber M., Zimmer I., Louis S., Fischbach R. J., Schnitzler J.-P.. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves.  Plant Physiology. (2005);  139 474-484
  • 127 McGarvey D. J., Croteau R.. Terpenoid metabolism.  Plant Cell. (1995);  7 1015-1026
  • 128 Miller B., Madilao L. L., Ralph S., Bohlmann J.. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce.  Plant Physiology. (2005);  137 369-382
  • 129 Monson R. K., Fall R.. Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration.  Plant Physiology. (1989);  90 267-274
  • 130 Monson R. K., Harley P. C., Litvak M. E., Wildermuth M., Guenther A. B., Zimmerman P. R., Fall R.. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves.  Oecologia. (1994);  99 260-270
  • 131 Monson R. K., Hills A. J., Zimmerman P. R., Fall R.. Studies of the relationship between isoprene emission rate and CO2 or photon-flux density using a real-time isoprene analyser.  Plant, Cell and Environment. (1991);  14 517-523
  • 132 Monson R. K., Jaeger C. H., Adams W. W. I., Driggers E. M., Silver G. M., Fall R.. Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature.  Plant Physiology. (1992);  98 1175-1180
  • 133 Niinemets Ü.. Acclimation to low irradiance in Picea abies: influences of past and present light climate on foliage structure and function.  Tree Physiology. (1997 a);  17 723-732
  • 134 Niinemets Ü.. Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies.  Trees – Structure and Function. (1997 b);  11 144-154
  • 135 Niinemets Ü.. Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology.  Trees – Structure and Function. (1998);  12 446-451
  • 136 Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T.. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species.  Plant, Cell and Environment. (2005);  28 1552-1566
  • 137 Niinemets Ü., Kull O., Tenhunen J. D.. Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees.  Plant, Cell and Environment. (2004 a);  27 293-312
  • 138 Niinemets Ü., Loreto F., Reichstein M.. Physiological and physicochemical controls on foliar volatile organic compound emissions.  Trends in Plant Science. (2004 b);  9 180-186
  • 139 Niinemets Ü., Lukjanova A.. Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris.  Annals of Forest Science. (2003);  60 195-208
  • 140 Niinemets Ü., Oja V., Kull O.. Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees.  Plant, Cell and Environment. (1999 b);  22 1497-1513
  • 141 Niinemets Ü., Portsmuth A., Tobias M.. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants.  New Phytologist. (2006);  171 91-104
  • 142 Niinemets Ü., Reichstein M.. Effects of nonspecific monoterpenoid storage in leaf tissues in emission kinetics and composition in Mediterranean sclerophyllous Quercus species: a model analysis.  Global Biogeochemical Cycles. (2002);  16 DOI: 10.1029/2002GB001927
  • 143 Niinemets Ü., Reichstein M.. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained.  Journal of Geophysical Research – Atmospheres. (2003);  108 4208 DOI: 10.1029/2002JD002620
  • 144 Niinemets Ü., Reichstein M., Staudt M., Seufert G., Tenhunen J. D.. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea.  Plant Physiology. (2002 a);  130 1371-1385
  • 145 Niinemets Ü., Seufert G., Steinbrecher R., Tenhunen J. D.. A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species.  New Phytologist. (2002 b);  153 257-273
  • 146 Niinemets Ü., Tamm Ü.. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.  Tree Physiology. (2005);  25 1001-1014
  • 147 Niinemets Ü., Tenhunen J. D., Harley P. C., Steinbrecher R.. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus.  Plant, Cell and Environment. (1999 a);  22 1319-1335
  • 148 Niinemets Ü., Valladares F.. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints.  Plant Biology. (2004);  6 254-268
  • 149 Noe S. M., Ciccioli P., Brancaleoni E., Loreto F., Niinemets Ü.. Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics.  Atmospheric Environment. (2006);  40 4649-4662
  • 150 Ohta K.. Diurnal and seasonal variations in isoprene emission from live oak.  Geochemical Journal. (1986);  19 269-274
  • 151 Otter L. B., Guenther A., Greenberg J.. Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands.  Atmospheric Environment. (2002);  36 4265-4275
  • 152 Otter L., Guenther A., Wiedinmyer C., Fleming G., Harley P., Greenberg J.. Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator.  Journal of Geophysical Research – Atmospheres. (2003);  108 SAF 41-1 DOI: 10.1029/2002JD002609
  • 153 Owen S. M., Boissard C., Hewitt C. N.. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale.  Atmospheric Environment. (2001);  35 5393-5409
  • 154 Palmer P. I., Abbot D. S., Fu T.-M., Jacob D. J., Chance K., Kurosu T. P., Guenther A., Wiedinmyer C., Stanton J. C., Pilling M. J., Pressley S., Lamb B., Sumner A. L.. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column.  Journal of Geophysical Research. (2006);  111 DOI: 10.1029/2005JD006689
  • 155 Pegoraro E., Abrell L., Van Haren J., Barron-Gafford G., Grieve K. A., Malhi Y., Murthy R., Lin G.. The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm.  Global Change Biology. (2005);  11 1234-1246
  • 156 Pegoraro E., Rey A., Bobich E. G., Barron-Gafford G. A., Grieve K. A., Mahli Y., Murthy R.. Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought.  Functional Plant Biology. (2004 a);  31 1137-1147
  • 157 Pegoraro E., Rey A., Greenberg J., Harley P., Grace J., Mahli Y., Guenther A.. Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill.  Atmospheric Environment. (2004 b);  38 6149-6156
  • 158 Pegoraro E., Rey A., Abrell L., Van Haren J., Lin G.. Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest.  Global Change Biology. (2006);  12 456-469
  • 159 Peñuelas J., Llusia J.. Seasonal patterns of non-terpenoid C‐6-C10VOC emission from seven Mediterranean woody species.  Chemosphere. (2001);  45 237-244
  • 160 Peñuelas J., Llusia J., Asensio D., Munne-Bosch S.. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions.  Plant, Cell and Environment. (2005);  28 278-286
  • 161 Petron G., Harley P., Greenberg J., Guenther A.. Seasonal temperature variations influence isoprene emissions.  Geophysical Research Letters. (2001);  28 1707-1710
  • 162 Pierce T., Geron C., Bender L., Dennis R., Tonnesen G., Guenther A.. Influence of increased isoprene emissions on regional ozone modeling.  Journal of Geophysical Research – Atmospheres. (1998);  103 25611-25629
  • 163 Pierce T., Waldruff P.. PC-BEIS: a personal computer version of the biogenic emission inventory system.  Journal of Air and Waste Management Association. (1991);  41 937-941
  • 164 Pio C. A., Silva P. A., Cerqueira M. A., Nunes T. V.. Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees.  Atmospheric Environment. (2005);  39 1817-1827
  • 165 Plaza J., Nunez L., Pujadas M., Perrez-Pastor R., Bermejo V., Garcia-Alonso S., Elvira S.. Field monoterpene emission of Mediterranean oak (Quercus ilex) in the central Iberian Peninsula measured by enclosure and micrometeorological techniques: observation of drought stress effect.  Journal of Geophysical Research. (2005);  110 DOI: 10.1029/2004JD005168
  • 166 Possell M., Heath J., Hewitt C. N., Ayres E., Kerstiens G.. Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur.  Global Change Biology. (2004);  10 1835-1843
  • 167 Possell M., Hewitt C. N., Beerling D. J.. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants.  Global Change Biology. (2005);  11 60-69
  • 168 Pressley S., Lamb B., Westberg H., Vogel C.. Relationships among canopy scale energy fluxes and isoprene flux derived from long-term, seasonal eddy covariance measurements over a hardwood forest.  Agricultural and Forest Meteorology. (2006);  136 188-202
  • 169 Rapparini F., Baraldi R., Facini O.. Seasonal variation of monoterpene emission from Malus domestica and Prunus avium.  Phytochemistry. (2001);  57 681-687
  • 170 Rapparini F., Baraldi R., Miglietta F., Loreto F.. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment.  Plant, Cell and Environment. (2004);  27 381-391
  • 171 Rosenstiel T. N., Ebbets A. L., Khatri W. C., Fall R., Monson R. K.. Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate.  Plant Biology. (2004);  6 12-21
  • 172 Rosenstiel T. N., Fisher A. J., Fall R., Monson R. K.. Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.  Plant Physiology. (2002);  129 1276-1284
  • 173 Rosenstiel T. N., Potosnak M. J., Griffin K. L., Fall R., Monson R. K.. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem.  Nature. (2003);  421 256-259
  • 174 Sabillon D., Cremades L. V.. Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements – relationship with temperature and PAR.  Atmospheric Environment. (2001);  35 4419-4431
  • 175 Schaab G., Steinbrecher R., Lacaze B.. Influence of seasonality, canopy light extinction, and terrain on potential isoprenoid emission from a Mediterranean-type ecosystem in France.  Journal of Geophysical Research – Atmospheres. (2003);  108 1-14
  • 176 Schnitzler J.-P., Lehning A., Steinbrecher R.. Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modelling isoprene emission rates.  Botanica Acta. (1997);  110 240-243
  • 177 Schnitzler J.-P., Zimmer I., Bachl A., Arend M., Fromm J., Fischbach R. J.. Biochemical properties of isoprene synthase in poplar (Populus canescens).  Planta. (2005);  222 777-786
  • 178 Scholefield P. A., Doick K. J., Herbert B. M. J., Hewitt C. N. S., Schnitzler J.-P., Pinelli P., Loreto F.. Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring.  Plant, Cell and Environment. (2004);  27 393-401
  • 179 Schuh G., Heiden A. C., Hoffmann T., Kahl J., Rockel P., Rudolph J., Wildt J.. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity.  Journal of Atmospheric Chemistry. (1997);  27 291-318
  • 180 Scott K. I., Benjamin M. T.. Development of a biogenic volatile organic compounds emission inventory for the SCOS97-NARSTO domain.  Atmospheric Environment. (2003);  37 39-49
  • 181 Sharkey T. D.. O2-insensitive photosynthesis in C3 plants.  Plant Physiology. (1985);  78 71-75
  • 182 Sharkey T. D.. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene.  Plant, Cell and Environment. (2005);  28 269-277
  • 183 Sharkey T. D., Chen X., Yeh S.. Isoprene increases thermotolerance of fosmidomycin-fed leaves.  Plant Physiology. (2001);  125 2001-2006
  • 184 Sharkey T. D., Loreto F.. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves.  Oecologia. (1993);  95 328-333
  • 185 Sharkey T. D., Loreto F., Delwiche C. F.. The biochemistry of isoprene emission from leaves during photosynthesis. Sharkey, T. D., Holland, E. A., and Mooney, H. A., eds. Trace Gas Emissions by Plants. New York; Academic Press (1991 b): 153-184
  • 186 Sharkey T. D., Loreto F., Delwiche C. F.. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves.  Plant, Cell and Environment. (1991 a);  14 333-338
  • 187 Sharkey T. D., Singsaas E. L., Lerdau M. T., Geron C. D.. Weather effects on isoprene emission capacity and applications in emissions algorithms.  Ecological Applications. (1999);  9 1132-1137
  • 188 Sharkey T. D., Stitt M., Heineke D., Gerhardt R., Raschke K., Heldt H. W.. Limitation of photosynthesis by carbon metabolism. II. O2 insensitive CO2 uptake results from limitation of triose phosphate utilization.  Plant Physiology. (1986);  81 1123-1129
  • 189 Sharkey T. D., Yeh S.. Isoprene emission from plants.  Annual Review of Plant Physiology and Molecular Biology. (2001);  52 407-436
  • 190 Simpson D., Guenther A., Hewitt C. N., Steinbrecher R.. Biogenic emissions in Europe. 1. Estimates and uncertainties.  Journal of Geophysical Research. (1995);  100 22875-22890
  • 191 Simpson D., Winiwarter W., Börjesson G., Cinderby S., Ferreiro A., Guenther A., Hewitt C. N., Janson R., Khalil M. A. K., Owen S., Pierce T. E., Puxbaum H., Shearer M., Skiba U., Steinbrecher R., Tarrason L., Öquist M. G.. Inventorying emissions from nature in Europe.  Journal of Geophysical Research. (1999);  104 8113-8152
  • 192 Singsaas E. L., Laporte M. M., Shi J.-Z., Monson R. K., Bowling D. R., Johnson K., Lerdau M., Jasentuliytana A., Sharkey T. D.. Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves.  Tree Physiology. (1999);  19 917-924
  • 193 Singsaas E. L., Sharkey T. D.. The regulation of isoprene emission responses to rapid leaf temperature fluctuations.  Plant, Cell and Environment. (1998);  21 1181-1188
  • 194 Singsaas E. L., Sharkey T. D.. The effects of high temperature on isoprene synthesis in oak leaves.  Plant, Cell and Environment. (2000);  23 751-757
  • 195 Solmon F., Sarrat C., Serca D., Tulet P., Rosset R.. Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode.  Atmospheric Environment. (2004);  38 3853-3865
  • 196 Spirig C., Neftel A., Ammann C., Dommen J., Grabmer W., Thielmann A., Schaub A., Beauchamp J., Wisthaler A., Hansel A.. Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry.  Atmospheric Chemistry and Physics. (2005);  5 465-481
  • 197 Spittler M., Barnes I., Bejan I., Brockmann K. J., Benter T., Wirtz K.. Reactions of NO3 radicals with limonene and a-pinene: product and SOA formation.  Atmospheric Environment. (2006);  40 116-127
  • 198 Staudt M., Bertin N., Frenzel B., Seufert G.. Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees – implications for emission modeling.  Journal of Atmospheric Chemistry. (2000);  35 77-99
  • 199 Staudt M., Bertin N., Hansen U., Seufert G., Ciccioli P., Foster P., Frenzel B., Fugit J. L.. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions.  Atmospheric Environment. (1997);  31 145-156
  • 200 Staudt M., Joffre R., Rambal S.. How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes.  New Phytologist. (2003);  158 61-73
  • 201 Staudt M., Joffre R., Rambal S., Kesselmeier J.. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relations to structural and ecophysiological parameters.  Tree Physiology. (2001);  21 437-445
  • 202 Staudt M., Rambal S., Joffre R., Kesselmeier J.. Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France.  Journal of Geophysical Research. (2002);  107 4602-4608
  • 203 Stewart H. E., Hewitt C. N., Bunce R. G. H., Steinbrecher R., Smiatek G., Schoenemeyer T.. A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions – model description and application to Great Britain.  Journal of Geophysical Research. (2003);  108 4644 DOI: 10.1029/2002JD002694
  • 204 Stitt M.. Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2.  Plant Physiology. (1986);  81 1115-1122
  • 205 Thunis P., Cuvelier C.. Impact of biogenic emissions on ozone formation in the Mediterranean area – a BEMA modelling study.  Atmospheric Environment. (2000);  34 467-481
  • 206 Tingey D. T., Evans R., Gumpertz M.. Effects of environmental conditions on isoprene emission from live oak.  Planta. (1981);  152 565-570
  • 207 Tingey D., Manning M., Grothaus L., Burns W.. Influence of light and temperature on monoterpene emission rates from slash pine.  Plant Physiology. (1980);  65 797-801
  • 208 Tingey D. T., Turner D. P., Weber J. A.. Factors controlling the emissions of monoterpenes and other volatile organic compounds. Sharkey, T. D., Holland, E. A., and Mooney, H. A., eds. Trace Gas Emissions by Plants. New York; Academic Press (1991): 93-119
  • 209 Tunved P., Hansson H.-C., Kerminen V.-M., Ström J., Dal Maso M., Lihavainen H., Viisanen Y., Aalto P. P., Komppula M., Kulmala M.. High natural aerosol loading over boreal forests.  Science. (2006);  312 261-263
  • 210 van Poecke R. M., Dicke M.. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant.  Plant Biology. (2004);  6 387-401
  • 211 Velikova V., Loreto F.. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress.  Plant, Cell and Environment. (2005);  28 318-327
  • 212 Vuorinen T., Nerg A.-M., Vapaavuori E., Holopainen J. K.. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations.  Atmospheric Environment. (2005);  39 1185-1197
  • 213 Westberg H., Lamb B., Kempf K., Allwine G.. Isoprene emission inventory for the BOREAS southern study area.  Tree Physiology. (2000);  20 735-743
  • 214 Wiberley A. E., Linskey A. R., Falbel T. G., Sharkey T. D.. Development of the capacity for isoprene emission in kudzu.  Plant, Cell and Environment. (2005);  28 898-905
  • 215 Wildermuth M. C.. Subcellular location and biophysical regulation of foliar isoprene production (chloroplasts). PhD Thesis, Univ. Colorado Boulder, USA. (1997): 1-307
  • 216 Xu Y., Wesely M. L., Pierce T. E.. Estimates of biogenic emissions using satellite observations and influence of isoprene emission on O3 formation over the eastern United States.  Atmospheric Environment. (2002);  36 5819-5829
  • 217 Zeidler J. G., Lichtenthaler H. K., May H. U., Lichtenthaler F. W.. Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway?.  Zeitschrift für Naturforschung. (1997);  52c 15-23
  • 218 Zhang X. S., Mu Y. J., Song W. Z., Zhuang Y. H.. Seasonal variations of isoprene emissions from deciduous trees.  Atmospheric Environment. (2000);  34 3027-3032
  • 219 Zimmer W., Brüggemann N., Emeis S., Giersch C., Lehning A., Steinbrecher R., Schnitzler J.-P.. Process-based modelling of isoprene emission by oak leaves.  Plant, Cell and Environment. (2000);  23 585-595
  • 220 Zimmer W., Steinbrecher R., Körner C., Schnitzler J. P.. The process-based SIM‐BIM model: towards more realistic prediction of isoprene emissions from adult Quercus petraea forest trees.  Atmospheric Environment. (2003);  37 1665-1671

R. Grote

Research Center Karlsruhe GmbH
Institute for Meteorology and Climate Research
Atmospheric Environmental Research (IMK‐IFU)

Kreuzeckbahnstraße 19

82467 Garmisch-Partenkirchen

Germany

Email: ruediger.grote@imk.fzk.de

Guest Editor: F. Loreto

    >