Klin Monbl Augenheilkd 2008; 225(6): 548-554
DOI: 10.1055/s-2007-963760
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Pathomechanismen der Alterung des RPE und prophylaktische Therapieoptionen im Hinblick auf die AMD

Pathomechanisms für Aging of Retinal Pigment Epithelium (RPE) and Prophylactic Therapy Options in Regard to AMDF. Schütt1 , J. Kopitz2 , A. Yu3 , U. Welge-Lüssen3
  • 1Augenklinik der Universität Heidelberg
  • 2Pathologie der Universität Heidelberg
  • 3Augenklinik der Ludwig-Maximilians Universität München
Further Information

Publication History

Eingegangen: 9.11.2007

Angenommen: 23.11.2007

Publication Date:
02 June 2008 (online)

Zusammenfassung

Ein intaktes retinales Pigmentepithel (RPE) ist für die Funktion der darüber liegenden neurosensorischen Netzhaut eine zentrale Voraussetzung. In der postmitotischen einlagigen Zellschicht des RPE sind unterschiedlichste Funktionen, wie z. B. Abbau der Photorezeptoraußensegmente, Vitamin-A-Stoffwechsel, Unterstützung des retinalen Metabolismus und Aufrechterhaltung der äußeren Blut-Retina-Schranke vereinigt. Bedingt durch die Belastungen einer hohen Stoffwechselrate, hoher okularer Sauerstoffspiegel, Exposition mit energiereichem kurzwelligem Licht und einer damit verbundenen Bildung von freien Sauerstoffradikalen ist das RPE auf effektive Schutzsysteme angewiesen. Trotz hochdifferenzierter Abwehrmechanismen gegenüber diesem Stress kommt es im Rahmen der Alterung zu einem kumulativen Schaden im RPE, der letztlich als eine wesentliche Teilkomponente in der Pathogenese der altersabhängigen Makuladegeneration zu sehen ist. Das bessere Verständnis dieser Vorgänge wird zur Entwicklung neuer prophylaktischer Ansätze beitragen, die in einer ständig älter werdenden Gesellschaft dringend gebraucht werden.

Abstract

An intact retinal pigment epithelium (RPE) represents an essential condition for the visual process. This post-mitotic RPE monolayer combines different functions such as degradation of photoreceptor outer segments, vitamin A cycle, support of retinal metabolism and maintenance of the outer blood-retina barrier. As a consequence of excessive metabolism, high oxygen levels, exposition to light of short wave length and ensuing radical formation, the RPE is highly dependent on protective systems. In spite of differentiated defence mechanisms, aging processes cause cumulative RPE damage, representing a major component of age-related macular degeneration (AMD), the leading cause of irreversible severe vision loss in people over 50 years old. A better understanding of the underlying pathophysiology will help to develop new prophylactic options which is becoming more and more important with increasing life expectancy.

Literatur

  • 1 Age-Related Eye Disease Study Research Group . A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8.  Arch Ophthalmol. 2001;  119 1417-1436
  • 2 Alves-Rodrigues A, Shao A. The science behind lutein.  Toxicol Lett. 2004;  150 57-83
  • 3 Anderson D H, Mullins R F, Hageman G S. et al . A role for local inflammation in the formation of drusen in the aging eye.  Am J Ophthalmol. 2002;  134 411-431
  • 4 Barouch F C, Miller J W. The role of inflammation and infection in age-related macular degeneration.  Int Ophthalmol Clin. 2007;  47 185-197
  • 5 Bazan N G. Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations.  Adv Exp Med Biol. 2006;  572 531-540
  • 6 Beatty S, Koh H, Phil M. et al . The role of oxidative stress in the pathogenesis of age-related macular degeneration.  Surv Ophthalmol. 2000;  45 115-134
  • 7 Bergmann M, Schutt F, Holz F G. et al . Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A 2-E may contribute to the pathogenesis of age-related macular degeneration.  FASEB J. 2004;  18 562-564
  • 8 Birch E E, Castañeda Y S, Wheaton D H. et al . Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo.  Am J Clin Nutr. 2005;  81 871-879
  • 9 Bok D. Evidence for an inflammatory process in age-related macular degeneration gains new support.  Proc Natl Acad Sci U S A. 2005;  102 7053-7054
  • 10 Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes.  Eye. 2001;  15 384-389
  • 11 Cangemi F E. TOZAL Study: an open case control study of an oral antioxidant and omega-3 supplement for dry AMD.  BMC Ophthalmol. 2007;  26 (7) 3
  • 12 Chen Y, Houghton L A, Brenna J T. et al . Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal.  J Biol Chem. 1996;  271 20 507-20 515
  • 13 Choi J S, Kim D, Hong Y M. et al . Inhibition of nNOS and COX-2 expression by lutein in acute retinal ischemia.  Nutrition. 2006;  22 668-671
  • 14 Chua B, Flood V, Rochtchina E. et al . Dietary fatty acids and the 5-year incidence of age-related maculopathy.  Arch Ophthalmol. 2006;  124 981-986
  • 15 Coleman H, Chew E. Nutritional supplementation in age-related macular degeneration.  Curr Opin Ophthalmol. 2007;  18 220-223
  • 16 Elner V M. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.  Trans Am Ophthalmol Soc. 2002;  100 301-338
  • 17 Esparza-Gordillo J, Soria J M, Buil A. et al . Genetic and environmental factors influencing the human factor H plasma levels.  Immunogenetics. 2004;  56 77-82
  • 18 Evans J R. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration.  Cochrane Database Syst Rev. 2006;  2 CD000254
  • 19 Frank R N, Amin R H, Puklin J E. Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration.  Am J Ophthalmol. 1999;  127 694-709
  • 20 Globus M Y, Busto R, Lin B. et al . Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation.  J Neurochem. 1995;  65 1250-1256
  • 21 Holz F G, Pauleikhoff D, Spaide R F. et al .Altersabhängige Makuladegeneration. Springer-Verlag 2004
  • 22 Holz F G, Schutt F, Kopitz J. et al . Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin.  Invest Ophthalmol Vis Sci. 1999;  40 737-743
  • 23 Howes K A, Liu Y, Dunaief J L. et al . Receptor for advanced glyciation end products and age-related macular degeneration.  Invest Ophthalmol Vis Sci. 2004;  45 3713-3720
  • 24 Hunt S. Increased dietary intake of omega-3-PUFA reduces pathological retinal angiogenesis.  Ophthalmologe. 2007;  104 727-729
  • 25 Ishibashi T, Murata T, Hangai M. et al . Advanced glycation end products in age-related macular degeneration.  Arch Ophthalmol. 1998;  116 1629-1632
  • 26 Jang Y P, Zhou J, Nakanishi K. et al . Anthocyanins protect against A 2E photooxidation and membrane permeabilization in retinal pigment epithelial cells.  Photochem Photobiol. 2005;  81 529-536
  • 27 Jin X H, Ohgami K, Shiratori K. et al . Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats.  Invest Ophthalmol Vis Sci. 2006;  47 2562-2568
  • 28 Johnson E J, Schaefer E J. Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration.  Am J Clin Nutr. 2006;  83 1494S-1498S
  • 29 Kaemmerer E, Schutt F, Krohne T U. et al . Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis.  Invest Ophthalmol Vis Sci. 2007;  48 1342-1347
  • 30 Kim S R, Nakanishi K, Itagaki Y. et al . Photooxidation of A 2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin.  Exp Eye Res. 2006;  82 828-839
  • 31 Kopitz J, Holz F G, Kaemmerer E. et al . Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration.  Biochimie. 2004;  86 825-31
  • 32 Krajčovičová-Kudláčková M, Valachovičová M, Pauková V. et al . Effects of diet and age on oxidative damage products in healthy subjects.  Physiol Res. 2007; [Epub ahead of print]; 
  • 33 Lamb L E, Simon J D. A2E: a component of ocular lipofuscin.  Photochem Photobiol. 2004;  79 127-136
  • 34 Lee E H, Faulhaber D, Hanson K M. et al . Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression.  J Invest Dermatol. 2004;  122 510-517
  • 35 Maeda A, Crabb J W, Palczewski K. Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging.  Biochemistry. 2005;  44 480-489
  • 36 Maitra I, Marcocci L, Droy-Lefaix M T. et al . Peroxyl radical scavenging activity of Ginkgo biloba extract EGb 761.  Biochem Pharmacol. 1995;  49 1649-1655
  • 37 Milbury P E, Graf B, Curran-Celentano J M. et al . Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells.  Invest Ophthalmol Vis Sci. 2007;  48 2343-2349
  • 38 Miyauchi O, Mizota A, Adachi-Usami E. et al . Protective effect of docosahexaenoic acid against retinal ischemic injury: an electroretinographic study.  Ophthalmic Res. 2001;  33 191-195
  • 39 Nolan J M, Stack J, O’Donovan O. et al . Risk factors for age-related maculopathy are associated with a relative lack of macular pigment.  Exp Eye Res. 2007;  84 61-74
  • 40 Ohta Y, Okubo T, Niwa T. et al . Prolonged marginal ascorbic acid deficiency induces oxidative stress in retina of guinea pigs.  Int J Vitam Nutr Res. 2002;  72 63-70
  • 41 Parisi V, Tedeschi M, Gallinaro G. et al . CARMIS Study Group: Carotenoids and Antioxidants in Age-Related Maculopathy Italian Study Multifocal Electroretinogram Modifications after 1 Year.  Ophthalmology. 2007; [Epub ahead of print]; 
  • 42 Rafi M M, Shafaie Y. Dietary lutein modulates inducible nitric oxide synthase (iNOS) gene and protein expression in mouse macrophage cells (RAW 264.7).  Mol Nutr Food Res. 2007;  51 333-340
  • 43 Ranchon I, Gorrand J M, Cluzel J. et al . Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract.  Invest Ophthalmol Vis Sci. 1999;  40 1191-1199
  • 44 Richer S, Stiles W, Statkute L. et al . Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial).  Optometry. 2004;  75 216-230
  • 45 Roh Y J, Moon C, Kim S Y. et al . Glutathione depletion induces differential apoptosis in cells of mouse retina, in vivo.  Neurosci Lett. 2007;  417 266-270
  • 46 Rotstein N P, Politi L E, German O L. et al . Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors.  Invest Ophthalmol Vis Sci. 2003;  44 2252-2259
  • 47 SanGiovanni J P, Chew E Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.  Prog Retin Eye Res. 2005;  24 87-138
  • 48 Scholl H P, Weber B H, Nöthen M M. et al . Y402 H polymorphism in complement factor H and age-related macula degeneration (AMD).  Ophthalmologe. 2005;  102 1029-1035
  • 49 Schutt F, Bergmann M, Holz F G. et al . Isolation of intact lysosomes from human RPE cells and effects of A 2-E on the integrity of the lysosomal and other cellular membranes.  Graefes Arch Clin Exp Ophthalmol. 2002;  240 983-988
  • 50 Schutt F, Bergmann M, Holz F G. et al . Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium.  Invest Ophthalmol Vis Sci. 2003;  44 3663-3668
  • 51 Schutt F, Bergmann M, Holz F G. et al . Accumulation of A 2-E in mitochondrial membranes of cultured RPE cells.  Graefes Arch Clin Exp Ophthalmol. 2007;  245 391-398
  • 52 Schutt F, Davies S, Kopitz J. et al . Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin.  Invest Ophthalmol Vis Sci. 2000;  41 2303-2308
  • 53 Schutt F, Ueberle B, Schnolzer M. et al . Proteome analysis of lipofuscin in human retinal pigment epithelial cells.  FEBS Lett. 2002;  528 217-221
  • 54 Schutt F, Völcker H E, Dithmar S. N-Acetylcystein verbessert die lysosomale Funktion und beschleunigt den Abbau von Photorezeptoraußensegmenten in der RPE-Zellkultur.  Klin Monatsbl Augenheilkd. 2007;  224 580-584
  • 55 Shamsi F A, Chaudhry I A, Boulton M E. et al . L-carnitine protects human retinal pigment epithelial cells from oxidative damage.  Curr Eye Res. 2007;  32 575-584
  • 56 Skerka C, Lauer N, Weinberger A A. et al . Defective complement control of factor H (Y402 H) and FHL-1 in age-related macular degeneration.  Mol Immunol. 2007;  44 3398-3406
  • 57 Sparrow J R, Cai B. Blue light-induced apoptosis of A 2E-containing RPE: involvement of caspase-3 and protection by Bcl-2.  Invest Ophthalmol Vis Sci. 2001;  42 1356-1362
  • 58 Stahl W. Macular carotenoids: lutein and zeaxanthin.  Dev Ophthalmol. 2005;  38 70-88
  • 59 Strauss O. The retinal pigment epithelium in visual function.  Physiol Rev. 2005;  85 845-881
  • 60 Sundelin S P, Nilsson S E. Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants.  Free Radic Biol Med. 2001;  31 217-225
  • 61 Tanito M, Yoshida Y, Kaidzu S. et al . Acceleration of age-related changes in the retina in alpha-tocopherol transfer protein null mice fed a Vitamin E-deficient diet.  Invest Ophthalmol Vis Sci. 2007;  48 396-404
  • 62 Trieschmann M, Beatty S, Nolan J M. et al . Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study.  Exp Eye Res. 2007;  84 718-728
  • 63 Leeuwen van R, Boekhoorn S, Vingerling J R. et al . Dietary intake of antioxidants and risk of age-related macular degeneration.  JAMA. 2005;  294 3101-3107
  • 64 Wang H, Nair M G, Strasburg G M. et al . Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries.  J Nat Prod. 1999;  62 294-296
  • 65 Whitehead A J, Mares J A, Danis R P. Macular pigment: a review of current knowledge.  Arch Ophthalmol. 2006;  124 1038-1045
  • 66 Xie Z, Wu X, Gong Y. et al . Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats.  Curr Eye Res. 2007;  32 471-479
  • 67 Yavin E. Versatile roles of docosahexaenoic acid in the prenatal brain: from pro- and anti-oxidant features to regulation of gene expression.  Prostaglandins Leukot Essent Fatty Acids. 2006;  75 203-211
  • 68 Zhou J, Cai B, Jang Y P. et al . Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells.  Exp Eye Res. 2005;  80 567-580
  • 69 Zhou J, Jang Y P, Kim S R. et al . Complement activation by photooxidation products of A 2E, a lipofuscin constituent of the retinal pigment epithelium.  Proc Natl Acad Sci U S A. 2006;  103 16 182-16 187

Prof. Dr. Florian Schütt

Universitäts-Augenklinik Heidelberg

INF 400

69120 Heidelberg

Phone: ++ 49/62 21/56 69 99

Fax: ++ 49/62 21/56 54 22

Email: florian_schuett@med.uni-heidelberg.de

    >