References and Notes
<A NAME="RS05306ST-1A">1a</A>
Takashima M.
Sakai H.
Bull. Agric. Chem. Soc. Jpn.
1960,
24:
647
<A NAME="RS05306ST-1B">1b</A>
Takashima M.
Sakai H.
Bull. Agric. Chem. Soc. Jpn.
1960,
24:
652
<A NAME="RS05306ST-1C">1c</A>
Takashima M.
Sakai H.
Arima K.
Agric. Biol. Chem.
1962,
26:
660
<A NAME="RS05306ST-1D">1d</A>
Takashima M.
Sakai H.
Arima K.
Agric. Biol. Chem.
1962,
26:
669
<A NAME="RS05306ST-2A">2a</A>
Fujiki H.
Sugimura T.
Cancer Surv.
1983,
2:
539
<A NAME="RS05306ST-2B">2b</A>
Hitotsuyanagi Y.
Fujiki H.
Suganuma M.
Aimi N.
Sakai S.
Endo Y.
Sugimura T.
Chem. Pharm. Bull.
1984,
32:
4233
<A NAME="RS05306ST-2C">2c</A>
Sakai S.
Aimi N.
Yamaguchi K.
Watanabe C.
Hitotsuyanagi Y.
Shudo K.
Itai A.
Chem. Pharm. Bull.
1984,
32:
354
<A NAME="RS05306ST-3">3</A>
The numbering system of teleocidins is defined in the following order of preference:
the indole ring, the nine-membered lactam ring, and the other substituents.
For selected synthesis of the teleocidins B, see:
<A NAME="RS05306ST-4A">4a</A>
Okabe K.
Muratake H.
Natsume M.
Tetrahedron
1991,
47:
8559
<A NAME="RS05306ST-4B">4b</A>
Nakatsuka S.
Masuda T.
Goto T.
Tetrahedron Lett.
1987,
28:
3671
<A NAME="RS05306ST-4C">4c</A>
For a recent and interesting approach towards the core of the teleocidins B, see:
<A NAME="RS05306ST-4D">4d</A>
Dangel BD.
Godula K.
Youn SW.
Sezen B.
Sames D.
J. Am. Chem. Soc.
2002,
124:
11856
<A NAME="RS05306ST-5A">5a</A>
Kishi Y.
Rando RR.
Acc. Chem. Res.
1998,
31:
163
<A NAME="RS05306ST-5B">5b</A>
Newton AC.
Chem. Rev.
2001,
101:
2353
<A NAME="RS05306ST-5C">5c</A>
Hinterding K.
Alonso-Díaz D.
Waldmann H.
Angew. Chem. Int. Ed.
1998,
37:
688
<A NAME="RS05306ST-5D">5d</A>
Meseguer B.
Alonzo-Díaz D.
Griebenow N.
Herget T.
Waldmann H.
Chem. Eur. J.
2000,
6:
3943
For some reviews, see:
<A NAME="RS05306ST-6A">6a</A>
De Meijere A.
Bräse S. In
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
John Wiley and Sons;
New York:
2002.
p.1223
<A NAME="RS05306ST-6B">6b</A>
Shibasaki M.
Vogl EM.
J. Organomet. Chem.
1999,
576:
1
<A NAME="RS05306ST-6C">6c</A>
Link JT.
Org. React.
2002,
60:
157
<A NAME="RS05306ST-7A">7a</A>
Ozawa F.
Kubo A.
Hayashi T.
J. Am. Chem. Soc.
1991,
113:
1417
<A NAME="RS05306ST-7B">7b</A>
Cabri W.
Candiani I.
DeBernardinis S.
Francalanci F.
Penco S.
J. Org. Chem.
1991,
56:
5796
<A NAME="RS05306ST-7C">7c</A>
Fristrup P.
Le Quement S.
Tanner D.
Norrby P.-O.
Organometallics
2004,
23:
6160
<A NAME="RS05306ST-8A">8a</A>
Addition of silver salts to the reaction mixture often allows the use of aryl and
vinyl halides in AIHR, see ref. 6.
<A NAME="RS05306ST-8B">8b</A> For a notorious example of IAHR where the ‘neutral’ pathway affords higher enantioselectivity
than the corresponding ‘cationic’, see:
Overman LE.
Poon DJ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
518
<A NAME="RS05306ST-9A">9a</A>
Baldwin JE.
J. Chem. Soc., Chem. Commun.
1976,
734
<A NAME="RS05306ST-9B">9b</A>
Baldwin JE.
J. Chem. Soc., Chem. Commun.
1976,
736
<A NAME="RS05306ST-9C">9c</A>
Grigg R.
Sridharan V.
Stevenson P.
Sukirthalingam S.
Worakun T.
Tetrahedron
1990,
46:
4003
<A NAME="RS05306ST-9D">9d</A>
See ref. 6.
<A NAME="RS05306ST-10">10</A> Indole 7 (which for R = Et is indole 13) has previously been used in synthetic studies towards Lyngbyatoxin A, see:
Moody CJ.
J. Chem. Soc., Chem. Commun.
1983,
1129
For selected reviews on the Claisen rearrangement, see:
<A NAME="RS05306ST-11A">11a</A>
Bennett GB.
Synthesis
1977,
589
<A NAME="RS05306ST-11B">11b</A>
Lutz RP.
Chem. Rev.
1984,
84:
205
<A NAME="RS05306ST-11C">11c</A>
Ito H.
Taguchi T.
Chem. Soc. Rev.
1999,
28:
43
<A NAME="RS05306ST-12">12</A>
Hemetsberger H.
Knittel D.
Weidmann H.
Monatsh. Chem.
1970,
101:
161
<A NAME="RS05306ST-13">13</A>
Shinmon N.
Cava M.
J. Chem. Soc., Chem. Commun.
1980,
1020
<A NAME="RS05306ST-14">14</A>
Scheinmann F.
Barner R.
Schmid H.
Helv. Chim. Acta
1968,
51:
1603
<A NAME="RS05306ST-15A">15a</A>
Karanewsky DS.
Kishi Y.
J. Org. Chem.
1976,
41:
3026
<A NAME="RS05306ST-15B">15b</A>
Falling SN.
Rapoport H.
J. Org. Chem.
1980,
45:
1260
<A NAME="RS05306ST-15C">15c</A>
Fukuyama T.
Tangqing L.
Peng G.
Tetrahedron Lett.
1994,
35:
2145
<A NAME="RS05306ST-16">16</A>
Procedure for the Preparation of 17a.
A solution of indole 13 (1.42 g, 4.16 mmol, 1.0 equiv), HMDS (8.7 mL, 41.8 mmol, 10 equiv) and dimethylaniline
(30 mL) in a closed, thick-wall glass container was inserted in a salt bath (53% KNO3, 40% NaNO2 and 7% NaNO3, by weight) at 195 °C until TLC showed no more starting material (aprox. 6-7 h).
After reaching r.t., the reaction mixture was partitioned between Et2O (150 mL) and 3 M aq HCl (150 mL); the organic layer was further washed with 3 M
aq HCl (100 mL), aq NaHCO3 (two portions of 120 mL), brine (50 mL) and dried (Na2SO4). The solvent was removed under reduced pressure to afford a tan-colored oil, which
was dissolved in EtOH (20 mL). The resulting solution was cooled to ice-bath temperature
and treated with 3 M aq HCl (2.5 mL). After approx. 10 min, the reaction mixture was
diluted with Et2O (90 mL), washed with aq NaHCO3 (two portions of 40 mL), brine (20 mL) and dried (Na2SO4). The resulting solution was concentrated under vacuum to approx. 1/5 of its original
volume and eluted/filtered through a short column of silica gel using hexane-Et2O (2:1). Rearranged indole 17a (1.25 g, 88%) was obtained as a thick, light-tan-colored oil. 1H NMR (300 MHz, CDCl3): δ = 9.38 (br s, 1 H), 7.41 (d, J = 8.5 Hz, 1 H), 7.11 (d, J = 2.1 Hz, 1 H), 6.67 (d, J = 8.5 Hz, 1 H), 6.57 (dd, J = 17.8, 10.8 Hz, 1 H), 5.63 (s, 1 H), 5.43 (d, J = 17.8 Hz, 1 H), 5.41 (d, J = 10.8 Hz, 1 H), 5.07 (m, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 2.18-1.76 (m, 4 H), 1.70 (s, 3 H), 1.62 (s, 3 H), 1.44 (s, 3 H),
1.40 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 162.2, 153.0, 148.7, 137.3, 131.9, 126.1, 124.5, 123.8, 122.1, 114.5, 113.3,
113.1, 108.7, 61.0, 45.5, 39.9, 25.9, 25.6, 24.0, 17.4, 14.7.
For selected applications in synthesis, see:
<A NAME="RS05306ST-17A">17a</A>
Martin T.
Moody CJ.
J. Chem. Soc., Chem. Commun.
1985,
1391
<A NAME="RS05306ST-17B">17b</A>
MacKenzie AR.
Moody CJ.
Rees CW.
Tetrahedron
1986,
42:
3259
<A NAME="RS05306ST-18">18</A> For a discussion, see:
Jensen F.
Introduction to Computational Chemistry
Wiley;
Chichester:
1999.
<A NAME="RS05306ST-19">19</A>
The structures were optimized at the B3LYP/6-31G* level of theory in Jaguar v. 4.2
from Scrödinger Inc., www.schrodinger.com. The conformations were chosen to represent
the immediate product from a chair transition state, as expected for a Claisen rearrangement.
For representative examples, see:
<A NAME="RS05306ST-20A">20a</A>
Ackermann L.
Kaspar LT.
Gschrei CJ.
Chem. Commun.
2004,
2824
<A NAME="RS05306ST-20B">20b</A>
Watanabe T.
Arai S.
Nishida A.
Synlett
2004,
907
<A NAME="RS05306ST-20C">20c</A>
Chen C.
Lieberman DR.
Larsen RD.
Verhoeven TR.
Reider PJ.
J. Org. Chem.
1997,
62:
2676
<A NAME="RS05306ST-21">21</A>
O’Connor B.
Zhang Y.
Negishi E.
Tetrahedron Lett.
1988,
29:
3903
<A NAME="RS05306ST-22">22</A>
Sakoda K.
Mihara J.
Ichikawa J.
Chem. Commun.
2005,
4684
<A NAME="RS05306ST-23">23</A>
Grigg R.
Savic V.
J. Chem. Soc., Chem. Commun.
2000,
871
<A NAME="RS05306ST-24A">24a</A>
Wiedenau P.
Monse B.
Blechert S.
Tetrahedron
1995,
51:
1167 ; in particular Scheme 7
<A NAME="RS05306ST-24B">24b</A>
Gaudin J.-M.
Tetrahedron Lett.
1991,
32:
6113
<A NAME="RS05306ST-25">25</A>
Typical Procedure for the Preparation of 20.
A mixture of indole 17e (50 mg, 0.1 mmol, 1.0 equiv), Pd(OAc)2 (2.5 mg, 0.01 mmol, 10 mol%), K2CO3 (44 mg, 0.3 mmol, 3.0 equiv), and the ligand (0.03 mmol, 30 mol%) in degassed THF
(2.1 mL) was refluxed for the time shown in Table
[2]
. After cooling to r.t., H2O (2 mL) was added and the mixture was partitioned between Et2O (15 mL) and H2O (10 mL). The organic layer was washed with brine (5 mL), dried (MgSO4) and concentrated under vacuum. The obtained residue was purified by flash chromatography
(hexane-ether, 2:1) to afford cyclopentadieno-indole 20 as a faint yellow oil. 1H NMR (300 MHz, CDCl3): δ = 8.63 (br s, 1 H), 7.58 (dd, J = 0.75, 8.1 Hz, 1 H), 7.29 (d, J = 2.0 Hz, 1 H), 7.19 (d, J = 8.1 Hz, 1 H), 6.78 (d, J = 5.4 Hz, 1 H), 6.39 (d, J = 5.4 Hz, 1 H), 4.94 (m, 1 H), 4.43 (q, J = 7.1 Hz, 2 H), 2.10-1.59 (m, 4 H), 1.55 (br s, 3 H), 1.44 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H), 1.36 (br s, 3 H).). 13C NMR (75 MHz, CDCl3): δ = 162.5, 144.7, 141.4, 134.1, 132.7, 131.9, 130.1, 127.6, 126.7, 124.4, 121.4,
116.1, 109.9, 61.2, 54.1, 38.0, 25.8, 23.9, 22.8, 17.7, 14.7.
<A NAME="RS05306ST-26">26</A>
Capon RJ.
MacLeod JK.
Scammells PJ.
Tetrahedron
1986,
42:
6545
<A NAME="RS05306ST-27">27</A>
Herb R.
Carroll AR.
Yoshida WY.
Scheuer PJ.
Paul VJ.
Tetrahedron
1990,
46:
3089