References and Notes
<A NAME="RA39505ST-1A">1a</A>
Kinnel R.
Gehrken H.-P.
Swali R.
Skoropowski G.
Scheuer PJ.
J. Org. Chem.
1998,
63:
3281 ; the isolation and structural determination of these natural products were reported
earlier in a preliminary communication
<A NAME="RA39505ST-1B">1b</A>
Kinnel RB.
Gehrken HP.
Scheuer PJ.
J. Am. Chem. Soc.
1993,
115:
3376
For excellent reviews of the synthetic efforts towards this family, see:
<A NAME="RA39505ST-2A">2a</A>
Hoffmann H.
Lindel T.
Synthesis
2003,
1753
<A NAME="RA39505ST-2B">2b</A> For a current review of synthetic approaches toward palau’amine, see:
Jacquot DEN.
Lindel T.
Curr. Org. Chem.
2005,
9:
1551
<A NAME="RA39505ST-3">3</A>
Overman LE.
Rogers BN.
Tellow JE.
Trenkle WC.
J. Am. Chem. Soc.
1997,
119:
7159 ; additional reports have appeared from this group describing additional studies
toward this group of targets - see ref. 18
<A NAME="RA39505ST-4">4</A>
McAlpine IJ.
Armstrong RW.
J. Org. Chem.
1996,
61:
5674
For isolation see:
<A NAME="RA39505ST-5A">5a</A>
Forenza L.
Minale R.
Riccio R.
Fattorusso E.
J. Chem. Soc., Chem. Commun.
1971,
1129
<A NAME="RA39505ST-5B">5b</A> For a structure correction and synthesis, see:
Garcia EE.
Benjamin LE.
Fryer RI.
J. Chem. Soc., Chem. Commun.
1973,
78
<A NAME="RA39505ST-6A">6a</A>
Ahond A.
Zurita MB.
Colin M.
Fizames C.
Laboute P.
Lavelle F.
Laurent D.
Poupat C.
Pusset J.
C. R. Acad. Sci.
1988,
307:
145
For total syntheses, see:
<A NAME="RA39505ST-6B">6b</A>
Bedoya Zurita M.
Ahond A.
Poupat C.
Potier P.
Tetrahedron
1989,
45:
6713
<A NAME="RA39505ST-6C">6c</A>
Commercon A.
Paris JM.
Tetrahedron Lett.
1991,
32:
4905
<A NAME="RA39505ST-6D">6d</A>
Commercon A.
Gueremy C.
Tetrahedron Lett.
1991,
32:
1419
For isolation, see:
<A NAME="RA39505ST-7A">7a</A>
Sharma G.
Magdoff-Fairchild B.
J. Org. Chem.
1977,
42:
4188
For total syntheses, see:
<A NAME="RA39505ST-7B">7b</A>
Foley LH.
Büchi G.
J. Am. Chem. Soc.
1982,
104:
1176
<A NAME="RA39505ST-7C">7c</A>
Wiese KJ.
Yakushijin K.
Horne DA.
Tetrahedron Lett.
2002,
43:
5135
<A NAME="RA39505ST-7D">7d</A>
Poullennec KG.
Romo D.
J. Am. Chem. Soc.
2003,
125:
6344
<A NAME="RA39505ST-7E">7e</A>
Chung R.
Yu E.
Incarvito CD.
Austin DJ.
Org. Lett.
2004,
6:
3881
<A NAME="RA39505ST-7F">7f</A>
Feldman KS.
Skoumbourdis AP.
Org. Lett.
2005,
7:
929
<A NAME="RA39505ST-7G">7g</A>
Jacquot DEN.
Zöllinger M.
Lindel T.
Angew. Chem. Int. Ed.
2005,
44:
2295
For isolation, see:
<A NAME="RA39505ST-8A">8a</A>
de Nanteuil G.
Ahond A.
Guilheim J.
Poupat C.
Dau ETH.
Potier P.
Tetrahedron
1985,
41:
6019
<A NAME="RA39505ST-8B">8b</A>
Fedoreyev SA.
Utkina NK.
Ilyin SG.
Reshetnyak MV.
Maximov OB.
Tetrahedron Lett.
1986,
27:
3177
<A NAME="RA39505ST-8C">8c</A>
For total synthesis, see: ref. 7c.
For isolation, see:
<A NAME="RA39505ST-9A">9a</A>
Walker RP.
Faulkner DJ.
Van Engen D.
Clardy J.
J. Am. Chem. Soc.
1981,
103:
6772
For total syntheses, see:
<A NAME="RA39505ST-9B">9b</A>
Baran PS.
Zografos AL.
O’Malley DP.
J. Am. Chem. Soc.
2004,
126:
3726
<A NAME="RA39505ST-9C">9c</A>
Birman VB.
Jiang X.-T.
Org. Lett.
2004,
6:
2369
For isolation, see:
<A NAME="RA39505ST-10A">10a</A>
Kobayashi J.
Tsuda M.
Murayama T.
Nakamura H.
Ohizumi Y.
Ishibashi M.
Iwamura M.
Ohta T.
Nozoe S.
Tetrahedron
1990,
46:
5579
<A NAME="RA39505ST-10B">10b</A>
Keifer PA.
Schwartz RE.
Koker MES.
Hughes RG.
Rittschof D.
Rinehart KL.
J. Org. Chem.
1991,
56:
2965
<A NAME="RA39505ST-10C">10c</A>
Williams DH.
Faulkner DJ.
Tetrahedron
1996,
52:
5381
<A NAME="RA39505ST-10D">10d</A> For total synthesis, see:
Baran PS.
O’Malley DP.
Zografos AL.
Angew. Chem. Int. Ed.
2004,
43:
2674
<A NAME="RA39505ST-10E">10e</A> Dimethyl ageliferin:
Kawasaki I.
Sakaguchi N.
Fukushima N.
Fujioka N.
Nikaido F.
Yamashita M.
Ohta S.
Tetrahedron Lett.
2002,
43:
4377
<A NAME="RA39505ST-11">11</A>
Kobayashi J.
Suzuki M.
Tsuda M.
Tetrahedron
1997,
53:
15681
<A NAME="RA39505ST-12">12</A>
Endo T.
Tsuda M.
Okada T.
Mitsuhashi S.
Shima H.
Kikuchi K.
Mikami Y.
Fromont J.
Kobayashi J.
J. Nat. Prod.
2004,
67:
1262
<A NAME="RA39505ST-13">13</A>
Urban S.
de Almeida Leone P.
Carroll AR.
Fechner GA.
Smith J.
Hooper JNA.
Quinn RJ.
J. Org. Chem.
1999,
64:
731
<A NAME="RA39505ST-14">14</A>
Nishimura S.
Matsunaga S.
Shibazaki M.
Suzuki K.
Furihata K.
van Soest RWM.
Fusetani N.
Org. Lett.
2003,
5:
2255
For isolation, see:
<A NAME="RA39505ST-15A">15a</A>
Tsukamoto S.
Kato H.
Hirota H.
Fusetani N.
J. Nat. Prod.
1996,
59:
501
<A NAME="RA39505ST-15B">15b</A> For total synthesis, see:
Olofson A.
Yakushijin K.
Horne DA.
J. Org. Chem.
1997,
62:
7918
<A NAME="RA39505ST-16">16</A>
This biosynthetic proposal was suggested by a reviewer of ref. 1a.
<A NAME="RA39505ST-17">17</A>
Al Mourabit A.
Potier P.
Eur. J. Org. Chem.
2001,
237
<A NAME="RA39505ST-18A">18a</A>
Belanger G.
Hong F.-T.
Overman LE.
Rogers BN.
Tellow JE.
Trenkle WC.
J. Org. Chem.
2002,
67:
7880
<A NAME="RA39505ST-18B">18b</A>
Katz JD.
Overman LE.
Tetrahedron
2004,
60:
9559
<A NAME="RA39505ST-19">19</A>
Starr JT.
Koch G.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
8793
<A NAME="RA39505ST-20A">20a</A>
Dilley AS.
Romo D.
Org. Lett.
2001,
3:
1535
<A NAME="RA39505ST-20B">20b</A>
Dransfield PJ.
Wang S.
Dilley A.
Romo D.
Org. Lett.
2005,
7:
1679
<A NAME="RA39505ST-21">21</A>
Koenig SG.
Miller SM.
Leonard KA.
Lowe RS.
Chen BC.
Austin DJ.
Org. Lett.
2003,
5:
2203
<A NAME="RA39505ST-22">22</A>
Garrido-Hernandez H.
Nakadai M.
Vimolratana M.
Li Q.
Doundoulakis T.
Harran PG.
Angew. Chem. Int. Ed.
2005,
44:
765
<A NAME="RA39505ST-23A">23a</A>
Yamazaki C.
Katayama K.
Suzuki K.
J. Chem. Soc., Perkin Trans. 1
1990,
3085
<A NAME="RA39505ST-23B">23b</A>
Kosaka K.
Maruyama K.
Nakamura H.
Ikeda M.
J. Heterocycl. Chem.
1991,
28:
1941
<A NAME="RA39505ST-23C">23c</A>
Wuonola MA.
Smallheer JM.
Tetrahedron Lett.
1992,
33:
5697
<A NAME="RA39505ST-23D">23d</A>
Xu Y.-Z.
Yakushijin K.
Horne DA.
Tetrahedron Lett.
1993,
34:
6981
<A NAME="RA39505ST-23E">23e</A>
Neipp C.
Ranslow PB.
Wan Z.
Snyder JK.
Tetrahedron Lett.
1997,
38:
7499
<A NAME="RA39505ST-23F">23f</A>
Wan Z.
Snyder JK.
Tetrahedron Lett.
1997,
38:
7495
<A NAME="RA39505ST-23G">23g</A>
Dang Q.
Liu Y.
Erion MD.
J. Am. Chem. Soc.
1999,
121:
5833
<A NAME="RA39505ST-23H">23h</A>
Wan Z.-K.
Woo GHC.
Snyder JK.
Tetrahedron
2001,
57:
5497
<A NAME="RA39505ST-23I">23i</A>
Lahue BR.
Wan Z.-K.
Snyder JK.
J. Org. Chem.
2003,
68:
4345
<A NAME="RA39505ST-23J">23j</A>
Lahue BR.
Lo S.-M.
Wan ZK.
Woo GHC.
Snyder JK.
J. Org. Chem.
2004,
69:
7171
<A NAME="RA39505ST-24">24</A>
Sepulveda-Arques J.
Abarca-Gonzalez B.
Medio-Simon M.
Adv. Heterocycl. Chem.
1995,
63:
339
For other types of pericyclic reactions involving imidazoles, see:
<A NAME="RA39505ST-25A">25a</A>
Begg CG.
Grimmett MR.
Wethey PD.
Aust. J. Chem.
1973,
26:
2435
<A NAME="RA39505ST-25B">25b</A>
Commerçon A.
Posinet G.
Tetrahedron Lett.
1990,
31:
3871
<A NAME="RA39505ST-25C">25c</A>
Bierer DE.
O’Connell JF.
Parquette JR.
Thompson CM.
Rapoport H.
J. Org. Chem.
1992,
57:
1390
<A NAME="RA39505ST-25D">25d</A>
Yashioka H.
Choshi T.
Sugino E.
Hibino S.
Heterocycles
1995,
41:
161
<A NAME="RA39505ST-25E">25e</A>
Berlinck RGS.
Britton R.
Piers E.
Lim L.
Roberge M.
Moreira da Rocha R.
Anderson RJ.
J. Org. Chem.
1998,
63:
9850
<A NAME="RA39505ST-25F">25f</A>
D’Auria M.
Racioppi R.
J. Photochem. Photobiol., A
1998,
112:
145
<A NAME="RA39505ST-26">26</A>
Walters MA.
Lee MD.
Tetrahedron Lett.
1994,
35:
8307
<A NAME="RA39505ST-27">27</A>
Deghati PYF.
Wanner MJ.
Koomen G.-J.
Tetrahedron Lett.
1998,
39:
4561
<A NAME="RA39505ST-28">28</A>
These authors did not report the isolation (or observation) of the initial adduct.
<A NAME="RA39505ST-29">29</A>
Since the enamine is effectively locked in an s-trans conformation it cannot react further at least as a diene in a Diels-Alder reaction.
<A NAME="RA39505ST-30">30</A>
Overberger CG.
Smith TW.
Macromolecules
1975,
8:
401 ; see also ref. 33
<A NAME="RA39505ST-31">31</A>
Kirk KL.
J. Heterocycl. Chem.
1985,
57:
57
<A NAME="RA39505ST-32A">32a</A>
Cliff MD.
Pyne SG.
J. Org. Chem.
1995,
60:
2378
<A NAME="RA39505ST-32B">32b</A>
Cliff MD.
Pyne SG.
Tetrahedron
1996,
52:
13703
<A NAME="RA39505ST-32C">32c</A>
Cliff MD.
Pyne SG.
J. Org. Chem.
1997,
62:
1023
<A NAME="RA39505ST-33A">33a</A>
Kokosa JM.
Szafasz RA.
Tagupa E.
J. Org. Chem.
1983,
48:
3605
<A NAME="RA39505ST-33B">33b</A>
Altman J.
Wilchek M.
J. Heterocycl. Chem.
1988,
25:
915
<A NAME="RA39505ST-34">34</A>
Lovely CJ.
Du H.
Dias HVR.
Org. Lett.
2001,
3:
1319
<A NAME="RA39505ST-35">35</A>
Benjes P.
Grimmett R.
Heterocycles
1994,
37:
735
<A NAME="RA39505ST-36">36</A>
Lovely CJ.
Du H.
Dias HVR.
Heterocycles
2003,
60:
1
<A NAME="RA39505ST-37">37</A>
Pilarski B.
Liebigs Ann. Chem.
1983,
1078
<A NAME="RA39505ST-38A">38a</A>
Dehmel F.
Abarbri M.
Knochel P.
Synlett
2000,
345
<A NAME="RA39505ST-38B">38b</A>
Abarbri M.
Thibonnet J.
Bérillon L.
Dehmel F.
Rottländer M.
Knochel P.
J. Org. Chem.
2000,
65:
4618
<A NAME="RA39505ST-38C">38c</A>
Knochel P.
Dohle W.
Gommermann N.
Kneisel F.
Kopp F.
Korn T.
Sapountzis I.
Vu V.
Angew. Chem. Int. Ed.
2003,
42:
4302
<A NAME="RA39505ST-39A">39a</A>
Iddon B.
Lim BL.
J. Chem. Soc., Perkin Trans. 1
1983,
735
<A NAME="RA39505ST-39B">39b</A>
O’Connell JF.
Parquette J.
Yelle WE.
Wang W.
Rapoport H.
Synthesis
1988,
767
<A NAME="RA39505ST-39C">39c</A>
Groziak MP.
Wei L.
J. Org. Chem.
1991,
56:
4296
<A NAME="RA39505ST-39D">39d</A>
Kawasaki I.
Yamashita M.
Ohta S.
Chem. Pharm. Bull.
1996,
44:
1831
<A NAME="RA39505ST-39E">39e</A>
Carver DS.
Lindell SD.
Saville-Stones EA.
Tetrahedron
1997,
53:
14481
<A NAME="RA39505ST-40">40</A>
He Y.
Chen Y.
Du H.
Schmid LA.
Lovely CJ.
Tetrahedron Lett.
2004,
45:
5529
<A NAME="RA39505ST-41">41</A>
The bis-Diels-Alder adduct was not obtained from reactions involving the N-methyl derivative. We do not have an unequivocal explanation for this outcome; however,
it may be related to differences in the size of the N-substituent (methyl vs. benzyl).
With the smaller methyl group, reduced steric compression is experienced on aromatizing
the enamine adduct 62f and thus this occurs faster to provide either 54f or 55f before oxidation can occur.
<A NAME="RA39505ST-42">42</A>
The bis-Diels-Alder adduct was not obtained in the presence of a radical scavenger
(BHT).
<A NAME="RA39505ST-43">43</A>
Du H.
PhD Dissertation
The University of Texas at Arlington;
Arlington, Texas:
2004.
<A NAME="RA39505ST-44A">44a</A> Vinylfuran:
Kusurkar RS.
Bhosale DK.
Synth. Commun.
1990,
20:
101
<A NAME="RA39505ST-44B">44b</A> Vinylpyrrole:
Jones RA.
Marriot MTP.
Rosenthal WP.
Arques JS.
J. Org. Chem.
1980,
45:
4515
Vinylthiophene:
<A NAME="RA39505ST-44C">44c</A>
Abarca B.
Ballesteros R.
Enriquez E.
Jones G.
Tetrahedron
1987,
43:
269
<A NAME="RA39505ST-44D">44d</A>
Abarca B.
Ballesteros R.
Enriquez E.
Jones G.
Tetrahedron
1985,
41:
2435
<A NAME="RA39505ST-45">45</A>
Acheson RM.
Foxton MW.
Abbott PJ.
Mills KR.
J. Chem. Soc. C
1967,
2218
<A NAME="RA39505ST-46">46</A>
Lovely CJ.
Du H.
He Y.
Dias HVR.
Org. Lett.
2004,
6:
735
<A NAME="RA39505ST-47">47</A>
Pirrung MC.
Pei T.
J. Org. Chem.
2000,
65:
2229
<A NAME="RA39505ST-48A">48a</A>
He, Y.; Lovely, C. J. unpublished results (see also ref. 63).
<A NAME="RA39505ST-48B">48b</A>
Sivappa, R.; Lovely, C. J. unpublished results.
<A NAME="RA39505ST-49">49</A>
We knew by the time that this chemistry was being investigated that reactions with
electrophiles occurred predominantly from the β-face, and thus the chloro moiety would
be endo, precisely that required for palau’amine.
<A NAME="RA39505ST-50A">50a</A>
Nahm S.
Weinreb SM.
Tetrahedron Lett.
1981,
22:
3815
<A NAME="RA39505ST-50B">50b</A>
Oster TA.
Harris TM.
Tetrahedron Lett.
1983,
24:
1851
<A NAME="RA39505ST-51">51</A>
Barrero AF.
Sanchez JF.
Oltra JE.
Teva D.
J. Heterocycl. Chem.
1991,
28:
939
<A NAME="RA39505ST-52">52</A>
In addition to the desired methyl ester a small quantity (ca. 12%) of a diimidazolyl
ketone was obtained.
<A NAME="RA39505ST-53">53</A>
Kawasaki I.
Taguchi Y.
Yamashita M.
Ohta S.
Heterocycles
1996,
43:
1375
<A NAME="RA39505ST-54A">54a</A>
Cuberes MR.
Moreno-Manas M.
Trius A.
Synthesis
1985,
302
<A NAME="RA39505ST-54B">54b</A>
Moreno-Manas M.
Bassa J.
Llado N.
Pleixats R.
Heterocycles
1990,
27:
673
<A NAME="RA39505ST-55A">55a</A>
The precise role of TMEDA is unknown at this time, however, in its absence mixtures
of products derived from reaction at the 2-amino moiety and/or the N3-imidazole nitrogen
were obtained. TMEDA has been used previously as an additive in selective introduction
of a Boc moiety in 2-aminothiazole derivatives, where a similar selectivity issue
arises.
<A NAME="RA39505ST-55B">55b</A>
Koyanagi K, and
Tsucha S. inventors; Jpn. Kokai Tokkyo Koho 93,164,438. Preparation of (alkoxycarbonyl-amino)heterocycles:
; Chem. Abstr. 1995, 122, 265365
<A NAME="RA39505ST-55C">55c</A>
Koyanagi K, and
Tsucha S. inventors; Jpn Kokai Tokkyo Koho 93,164,378. Method for Preparation of N-Heterocyclyl-urethane:
; Chem. Abstr. 1995, 122, 290878
<A NAME="RA39505ST-56">56</A>
By the time that these studies were underway, we knew already that direct rearrangement
of the enamine was not feasible, but the aromatic Diels-Alder adducts could be rearranged.
<A NAME="RA39505ST-57">57</A>
Wuonola MA.
Smallheer JM.
Tetrahedron Lett.
1992,
33:
5697
<A NAME="RA39505ST-58">58</A>
The initial use of trityl moiety as a protecting group was largely dictated by the
ready accessibility of the corresponding protected urocanic acid derivative, where
the preparation of 4-isomer was described in the literature. When we commenced this
aspect of the study, effective methods for the selective preparation of the 4-isomer
were lacking. Further, we expected from the preliminary intermolecular results that
these substrates would be viable.
<A NAME="RA39505ST-59">59</A>
Wu H.
MS Thesis
The University of Texas at Arlington;
Arlington, Texas:
2001.
<A NAME="RA39505ST-60A">60a</A>
He Y.
Chen Y.
Wu H.
Lovely CJ.
Org. Lett.
2003,
5:
3623
<A NAME="RA39505ST-60B">60b</A>
Fenton, H. M. unpublished results.
We have generally found that these sulfonyl urea derivatives are very convenient to
work with many of the substrates can be assembled in good yields and with minimal
purification (no chromatography), thus much of chemistry is done with this protecting
group. There are some drawbacks with its use, however. It has been found that the
DMAS group can migrate to the sterically least encumbered nitrogen in several derivatives
during prolonged heating during Diels-Alder reaction. Although this can be circumvented
by using less labile groups, the construction of precursors can be complicated with
SN2′-type processes particularly in the Bn-series (see Scheme 39 and Table 10). For
related observations, see:
<A NAME="RA39505ST-61A">61a</A>
Kim JW.
Abdelaal SM.
Bauer L.
Heimer NE.
J. Heterocycl. Chem.
1995,
32:
611
<A NAME="RA39505ST-61B">61b</A>
Bhagavatula L.
Premchandran RH.
Plata DJ.
King SA.
Morton HE.
Heterocycles
2000,
53:
729
<A NAME="RA39505ST-62A">62a</A>
Gschwend HW.
Lee AO.
Meier HP.
J. Org. Chem.
1973,
38:
2169
<A NAME="RA39505ST-62B">62b</A>
Jung ME.
Gervay J.
Tetrahedron Lett.
1988,
29:
2429
<A NAME="RA39505ST-62C">62c</A>
Jung ME.
Gervay J.
J. Am. Chem. Soc.
1991,
113:
224
<A NAME="RA39505ST-62D">62d</A>
Jung ME.
Synlett
1990,
186
<A NAME="RA39505ST-62E">62e</A>
Jung ME.
Synlett
1999,
843
<A NAME="RA39505ST-63">63</A>
He Y.
PhD Dissertation
The University of Texas at Arlington;
Arlington, Texas:
2005.
<A NAME="RA39505ST-64">64</A>
In these cases inseparable mixtures of the two cycloadducts were obtained. Reduction
of the lactam to the amine was accomplished with LiAlH4 leading to a single product, indicating the regiochemical relationship between the
two cycloadducts. He, Y.; Pasupathy, K.; Lovely C. J. unpublished results.
<A NAME="RA39505ST-65">65</A>
Attempted reductive cleavage of the amide to the corresponding amino alcohol was compromised
by cleavage of the DMAS group under the forcing conditions required.
<A NAME="RA39505ST-66">66</A>
Ishikawa T.
Senzaki M.
Kadoya R.
Morimoto T.
Miyake N.
Izawa M.
Saito S.
Kobayashi J.
Am. Chem. Soc.
2001,
123:
4607
<A NAME="RA39505ST-67">67</A>
In fact given the results obtained subsequently with the benzhydryl analogue, it is
quite reasonable to assume that both isomers are formed, but that the significant
decomposition precluded isolation of the minor isomer.
<A NAME="RA39505ST-68A">68a</A>
Richey JHG.
McLane RC.
Phillips CJ.
Tetrahedron Lett.
1976,
17:
233
<A NAME="RA39505ST-68B">68b</A>
Adam W.
Beck AK.
Pichota A.
Saha-Möller CR.
Seebach D.
Vogel N.
Zhang R.
Tetrahedron: Asymmetry
2003,
14:
1355
<A NAME="RA39505ST-69">69</A> Although the preparation of the requisite benzhydryl hydroxylamine is described
in the literature (ref. 68), our attempts to repeat these methods were not especially
successful. We have found that this hydroxylamine can be obtained reproducibly and
on reasonably large scales with NaCNBH3 and careful control of the pH, using methyl orange as an indicator. For related examples,
see:
Bernhart C.
Wermuth C.-G.
Tetrahedron Lett.
1974,
15:
2493
<A NAME="RA39505ST-70">70</A>
We have found that the magnitude of this coupling constant (J = 10-12 Hz) falls into a very narrow range for both the lactams and oxazine systems
prepared in the course of this study and is indicative of a trans ring fusion.
<A NAME="RA39505ST-71">71</A>
While it is conceivable that some of the endo-chloride was formed it would not have been sufficient to account for the diastereomeric
ratios of the ethers observed via a purely SN2 pathway.
<A NAME="RA39505ST-72">72</A>
The Romo group has encountered a similar stereochemical problem in their Diels-Alder/rearrangment
approach to palau’amine. See ref. 20.
<A NAME="RA39505ST-73">73</A>
Zhang X.
Foote CS.
J. Am. Chem. Soc.
1993,
115:
8867
<A NAME="RA39505ST-74A">74a</A>
Adam W.
Ahrweiler M.
Sauter M.
Schmiedeskamp B.
Tetrahedron Lett.
1993,
34:
5247
<A NAME="RA39505ST-74B">74b</A>
Adam W.
Ahrweiler M.
Peters K.
Schmiedeskamp B.
J. Org. Chem.
1994,
59:
2733
<A NAME="RA39505ST-75A">75a</A>
Bernhart CA.
Perreaut PM.
Ferrari BP.
Muneaux YA.
Assens J.-LA.
Clement J.
Haudricourt F.
Muneaux CF.
Taillades JE.
Vignal M.-A.
Gougat J.
G uiraudou PR.
Lacour CA.
Roccon A.
Cazaubon CF.
Breliere J.-C.
Le Fur G.
Nisato D.
J. Med. Chem.
1993,
36:
3371
<A NAME="RA39505ST-75B">75b</A> See also:
Knaggs AR.
Cable KM.
Cannell RJP.
Sidebottom PJ.
Wells GN.
Sutherland DR.
Tetrahedron
1995,
36:
477
<A NAME="RA39505ST-76">76</A>
This substrate was chosen for purely pragmatic reasons and not by design. As a result
of deconvoluting events related to the reaction of 60e with NPM described in Scheme
[15]
, we had accumulated a large supply of 64e.
<A NAME="RA39505ST-77">77</A>
The free alcohols were poor substrates due to benzylic oxidation.
<A NAME="RA39505ST-78">78</A>
At least to date, it has been difficult to incorporate other classes of protecting
groups on this hydroxyl group, although the silylation can be accomplished easily.
<A NAME="RA39505ST-79">79</A>
During the course of this investigation we have prepared a large number of spiro-fused
imidazolones and have not observed any significant differences in the spectroscopic
properties as a function of stereochemistry.
<A NAME="RA39505ST-80">80</A>
Tetrahydrobenzimidazole can be readily obtained through the partial reduction of benzimidazole.
<A NAME="RA39505ST-81">81</A>
This assignment is based on the chemical shift of the imidazolone carbonyl in the
13C NMR spectrum which falls in a very narrow range (δC=O = 180.1-185.8 ppm) and is substantially different from the 4-isomer of 189 (δC=O = 197.4 ppm).
<A NAME="RA39505ST-82">82</A>
Klutchko S.
Hodges JC.
Blankley CJ.
Colbry NL.
J. Heterocycl. Chem.
1991,
28:
97
<A NAME="RA39505ST-83A">83a</A>
Regel E.
Buechel K.-H.
Justus Liebigs Ann. Chem.
1977,
145
<A NAME="RA39505ST-83B">83b</A>
Regel E.
Justus Liebigs Ann. Chem.
1977,
159
Attempts to employ a direct Curtius rearrangement using diphenylphosphoryl azide and
the carboxylic acid were unsuccessful in our hands, although it has been employed
previously in a few limited cases with imidazoles; see:
<A NAME="RA39505ST-84A">84a</A>
Lin J.
Thompson CM.
J. Heterocycl. Chem.
1994,
31:
1701
<A NAME="RA39505ST-84B">84b</A>
Choshi T.
Tonari A.
Yoshioka H.
Sugino E.
Hibino S.
J. Org. Chem.
1993,
58:
7952
For related systems, see:
<A NAME="RA39505ST-85A">85a</A>
Garcia-Lopez MT.
Herranz R.
J. Heterocycl. Chem.
1982,
19:
233
<A NAME="RA39505ST-85B">85b</A>
Dolensky B.
Takeuchi Y.
Cohen LA.
Kirk KL.
J. Fluorine Chem.
2001,
107:
147
<A NAME="RA39505ST-86">86</A> A similar dimeric species was obtained in the oxidation of an indole derivative;
see:
Mithani S.
Drew DM.
Rydberg EH.
Taylor NJ.
Mooibroek S.
Dmitrienko GI.
J. Am. Chem. Soc.
1997,
119:
1159
<A NAME="RA39505ST-87">87</A>
Initial attempts to trigger this rearrangement using conditions that generate DMDO
catalytically have not been successful. This is unfortunate since the use of the more
reactive fluorinated variants of DMDO and asymmetric variants are more cost effective
when conducted with catalytic loadings of the ketone.
<A NAME="RA39505ST-88">88</A>
Davis FA.
Sheppard AC.
Tetrahedron
1989,
45:
5703
<A NAME="RA39505ST-89">89</A>
Rasapalli, S.; Devine, T.; Koswatta, P.; Lovely, C. J. unpublished results.
<A NAME="RA39505ST-90">90</A>
Sannigrahi M.
Tetrahedron
1999,
55:
9007
<A NAME="RA39505ST-91A">91a</A>
Schuster S.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2037
<A NAME="RA39505ST-91B">91b</A>
Grubbs RH.
Chan S.
Tetrahedron
1998,
54:
4413
<A NAME="RA39505ST-91C">91c</A>
Blechert S.
Pure Appl. Chem.
1999,
71:
1393
<A NAME="RA39505ST-91D">91d</A>
Pandit UK.
Overkleft HS.
Borer BC.
Bieräugel H.
Eur. J. Org. Chem.
1999,
959
<A NAME="RA39505ST-91E">91e</A>
Phillips AJ.
Abell AD.
Aldrichimica Acta
1999,
32:
75
<A NAME="RA39505ST-91F">91f</A>
Randall ML.
Snapper ML.
J. Mol. Catal. A: Chem.
1999,
133:
29
<A NAME="RA39505ST-91G">91g</A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
<A NAME="RA39505ST-91H">91h</A>
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
<A NAME="RA39505ST-91I">91i</A>
Walters MA.
Prog. Heterocycl. Chem.
2003,
15:
1
<A NAME="RA39505ST-91J">91j</A>
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RA39505ST-91K">91k</A>
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
109:
2239
<A NAME="RA39505ST-91L">91l</A>
Grubbs RH.
Tetrahedron
2004,
60:
7117
For isolation, see:
<A NAME="RA39505ST-92A">92a</A>
D’Ambrosio M.
Guerriero A.
Debitus C.
Ribes O.
Pusset J.
Leroy S.
Pietra F.
J. Chem. Soc., Chem. Commun.
1993,
1305
For total synthesis, see:
<A NAME="RA39505ST-92B">92b</A>
Anderson GT.
Chase CE.
Koh Y.
Stien D.
Weinreb SM.
J. Org. Chem.
1998,
63:
7594
<A NAME="RA39505ST-92C">92c</A>
Stien D.
Anderson GT.
Chase CE.
Koh Y.
Weinreb SM.
J. Am. Chem. Soc.
1999,
121:
9574
<A NAME="RA39505ST-92D">92d</A>
Feldman KS.
Mingo PA.
Hawkins PCD.
Heterocycles
1999,
51:
1283
<A NAME="RA39505ST-92E">92e</A>
Feldman KS.
Saunders JC.
J. Am. Chem. Soc.
2002,
124:
9060
<A NAME="RA39505ST-92F">92f</A>
Feldman KS.
Saunders JC.
Wrobleski ML.
J. Org. Chem.
2002,
67:
7096
<A NAME="RA39505ST-92G">92g</A>
Baron E.
O’Brien P.
Towers TD.
Tetrahedron Lett.
2002,
43:
723
<A NAME="RA39505ST-92H">92h</A>
Hale KJ.
Domostoj MM.
Tocher DA.
Irving E.
Scheinmann F.
Org. Lett.
2003,
5:
2927
<A NAME="RA39505ST-92I">92i</A>
Domostoj MM.
Irving E.
Scheinmann F.
Hale KJ.
Org. Lett.
2004,
6:
2615
<A NAME="RA39505ST-92J">92j</A>
Davis FA.
Deng J.
Org. Lett.
2005,
7:
621
<A NAME="RA39505ST-93">93</A>
Ung T.
Hejl A.
Grubbs RH.
Schrodi Y.
Organometallics
2004,
23:
5399
<A NAME="RA39505ST-94A">94a</A>
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
5274
<A NAME="RA39505ST-94B">94b</A>
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
10580
<A NAME="RA39505ST-95">95</A>
Comins D.
Meyers AI.
Synthesis
1978,
403
<A NAME="RA39505ST-96">96</A>
Chen Y.
Dias HVR.
Lovely CJ.
Tetrahedron Lett.
2003,
44:
1379
<A NAME="RA39505ST-97A">97a</A>
Gracias V.
Gasiecki AF.
Djuric SW.
Org. Lett.
2005,
7:
3183
<A NAME="RA39505ST-97B">97b</A>
Gracias V.
Gasiecki AF.
Djuric SW.
Tetrahedron Lett.
2005,
46:
9046
<A NAME="RA39505ST-98">98</A> A similar approach has been employed to elaborate vinylfuran derivatives; see:
Cooper JA.
Cornwall P.
Dell CP.
Knight DW.
Tetrahedron Lett.
1988,
29:
2107
<A NAME="RA39505ST-99A">99a</A>
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
New York:
1996.
Chap. 4.
p.290-440
<A NAME="RA39505ST-99B">99b</A>
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RA39505ST-99C">99c</A>
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I.
Wiley-Interscience;
New York:
2002.
<A NAME="RA39505ST-100A">100a</A>
Miyabe H.
Yoshida K.
Matsumura A.
Yamauchi M.
Takemoto Y.
Synlett
2003,
567
<A NAME="RA39505ST-100B">100b</A>
Miyabe H.
Matsumura A.
Yoshida K.
Yamauchi M.
Takemoto Y.
Synlett
2004,
2123
<A NAME="RA39505ST-100C">100c</A>
Miyabe H.
Yoshida K.
Reddy VK.
Matsumura A.
Takemoto Y.
J. Org. Chem.
2005,
70:
5630
<A NAME="RA39505ST-100D">100d</A> For a review of this chemistry, see:
Miyabe H.
Takemoto Y.
Synlett
2005,
1641
<A NAME="RA39505ST-101">101</A>
Krishnamoorthy, P.; Sivappa, R.; Lovely, C. J. Tetrahedron, submitted.
<A NAME="RA39505ST-102">102</A>
Papadopoulas EP.
J. Org. Chem.
1972,
37:
351