Subscribe to RSS
DOI: 10.1055/s-2006-927224
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
Invasive und nichtinvasive Diagnostik der Hypovolämie bei akuter Pankreatitis
Invasive and Non-Invasive Diagnostic Methods for Evaluation of Hypovolemia in Acute PancreatitisPublication History
Manuskript eingetroffen: 3.10.2006
Manuskript akzeptiert: 10.10.2006
Publication Date:
13 December 2006 (online)

Zusammenfassung
Die akute Pankreatitis ist bei schwerem Verlauf mit einem ausgeprägten intraperitonealen Flüssigkeitsverlust verbunden, welcher zu einem Volumenmangelschock führen kann. Die Sequestration von Flüssigkeit kann bis zu 40 Prozent des zirkulierenden Blutvolumens betragen. Die Menge der erforderlichen Flüssigkeits- und Elektrolytersatztherapie wird daher häufig deutlich unterschätzt, was sich auf die Rate der Organkomplikationen und die Gesamtmortalität der Erkrankung auswirkt. Außerdem scheint eine rasche und adäquate Volumentherapie durch Verbesserung der Organperfusion und Oxygenierung des Pankreas den prognostischen Verlauf einer akuten Pankreatitis zu beeinflussen. Auf der anderen Seite droht vor allem bei kardialen und pulmonalen Komorbiditäten eine Volumenüberladung mit daraus resultierender kardiopulmonaler Dekompensation. Dies macht die sorgfältige Bilanzierung und engmaschige Kontrolle der hämodynamischen Parameter, bei schwerem Verlauf der Erkrankung unter intensivmedizinischen Bedingungen, zu einem wichtigen Bestandteil der Therapie. Im klinischen Alltag wird der dominierende Anteil der Patienten mit akuter Pankreatitis allerdings unter normal stationären Bedingungen behandelt, sodass ein differenziertes und vor allem kontinuierliches hämodynamisches Monitoring nur begrenzt möglich ist. Neben der Überwachung der Vitalparameter sowie der Messung des zentralen Venendrucks existieren verschiedene andere klinische, laborchemische und bildgebende diagnostische Möglichkeiten, um das Ausmaß des intravasalen Flüssigkeitsdefizits und den individuellen Volumenbedarf eines Patienten mit akuter Pankreatitis orientierend zu ermitteln. Prospektive Studien für ein pankreatitisspezifisches Volumenmanagement fehlen bislang. In dieser Übersicht sollen daher die wichtigsten invasiven und nichtinvasiven diagnostischen Methoden zur Erfassung der zirkulatorischen Hypovolämie bei akuter Pankreatitis aufgezeigt werden.
Abkürzungen
Acute Physiology And Chronic Health Evaluation-II-Score; APACHE-II-Score; akutes Nierenversagen, ANV; Acute Respiratory Distress Syndrome, ARDS; Atrial Natriuretic Peptide (ANP); Brain Natriuretic Peptide (BNP); Bodymass-Index, BMI; Collapsibility Index, CI; C-reaktives Protein, CRP; glomeruläre Filtrationsrate, GFR; Herzfrequenz, Hf; Herzzeitvolumen, HZV; extravasales Lungenwasser, EVLW; Interleukin, Il; intrathorakales Blutvolumen, ITBV; Multiorganversagen, MOV; Pulse Contour Cardiac Output, PCCO; Plättchenaktivierungsfaktor, PAF; Pulmonaliskatheter, PAK; Systemic Inflammatory Response Syndrome, SIRS; transösophageale Echokardiographie, TEE; Tumornekrosefaktor, TNF; Velocity-Time-Integral, VTI; zentraler Venendruck, ZVD, zentraler Venenkatheter, ZVD
Abstract
Severe acute pancreatitis leads to a dramatic fluid loss in the intraperitoneal space which may result in circulatory decompensation. Sequestration of fluid can amount up to 40 percent of the circulating blood volume. The amount of fluid and electrolyte replacement is often misjudged leading to a higher rate of complications and a higher mortality rate of the disease. Furthermore, subsequent and adequate fluid resuscitation seems to influence the prognostic course of the disease by improving the perfusion and oxygenation of the pancreas. Otherwise volume overload may cause cardiopulmonary decompensation in the case of synchronous cardiopulmonary comorbidities. Therefore, an important part of treatment relies on careful haemodynamic monitoring, if necessary managed in an intensive care unit. Usually most patients with acute pancreatitis will be treated on a non-intensive medical ward which allows a differentiated and continuous haemodynamic monitoring only to a limited extent. Apart from monitoring circulatory parameters and measuring central venous pressure, there are other clinical methods, laboratory tests and radiological diagnostic procedures to determine the amount of intravascular fluid deficit and the individual volume demand of patients with acute pancreatitis. Prospective clinical trials for evaluation of pancreatitis-specific volume management do not exist so far. The aim of this review is to provide background information on invasive and non-invasive diagnostic methods for detection of circulatory hypovolemia in acute pancreatitis.
Abbreviations
Acute Physiology And Chronic Health Evaluation-II-Score; APACHE-II-Score; Acute renal failure, ARF; Acute Respiratory Distress Syndrome, ARDS; Atrial Natriuretic Peptide (ANP); Brain Natriuretic Peptide (BNP); Body Mass Index, BMI; Cardiac volume, CV; Central Venous Pressure, CVP; Central Venous Catheter, CVC; Collapsibility Index, CI; C-reaktive Protein, CRP; Glomerular Filtration Rate, GFR; Heart Rate, HR; Extravascular Lung Water, EVLW; Interleucin, Il; Intrathoracic Blood Volume, ITBV; Multiorgan Failure, MOF; Pulse Contour Cardiac Output, PCCO; Platelet-Activating Factor, PAF; Pulmonary Artery Catheter, PAC; Systemic Inflammatory Response Syndrome, SIRS; Transoesophageal Echokardiography, TEE; Tumor-Necrosis Factor, TNF; Velocity-Time-Integral, VTI
Schlüsselwörter
akute Pankreatitis - hämodynamisches Monitoring - Hypovolämie - Volumenmangelschock
Key words
acute pancreatitis - haemodynamic monitoring - hypovolemia - circulatory decompensation
Literatur
- 1
Bourke J, Griggs J, Ebdon D.
Variations in the incidence and the spatial distribution of patients with primary
acute pancreatitis in Nottingham 1969 - 76.
Gut.
1979;
20
366-371
MissingFormLabel
- 2
Lankisch P G, Assmus C, Maisoneuve P. et al .
Epidemiology of pancreatic diseases in Lüneburg County - A study in a defined German
population.
Pancreatology.
2002;
2
469-477
MissingFormLabel
- 3
Graham D.
Incidence and mortality of acute pancreatitis.
BM J.
1977;
2
1062-1063
MissingFormLabel
- 4
Mössner J, Keim V.
Therapy of acute pancreatitis.
Internist.
2003;
44
1508-1514
MissingFormLabel
- 5
Martinez J, Sanchez-Paya J, Palazon J M. et al .
Is obesity a risk factor in acute pancreatitis? A metaanalysis.
Pancreatology.
2004;
4
42-48
MissingFormLabel
- 6
Chatzicostas C, Roussomoustakaki M, Vlachonikolis I G. et al .
Comparison of Ranson, APACHE I and APACHE III scoring systems in acute pancreatitis.
Pancreas.
2002;
25
331-335
MissingFormLabel
- 7
Larvin M.
Assessment of severity and prognosis in acute pancreatitis.
Eur J Gastroenterol Hepatol.
1997;
9
122-130
MissingFormLabel
- 8
Schölmerich J, Heinrich A, Leser H G.
Diagnostic approach to acute pancreatitis: diagnosis, assesment of etiology and prognosis.
Hepato-Gastroenterol.
1993;
40
532-537
MissingFormLabel
- 9
UK W orking Party on Acute Pancreatitis.
UK guidelines for the management of acute pancreatitis.
Gut.
2005;
54 (Suppl III)
1-9
MissingFormLabel
- 10
Weidenbach H, Lerch M M, Gress T M. et al .
Vasoactive mediators and the progression from edematous to necrotizing experimental
pancreatitis.
Gut.
1995;
37
434-440
MissingFormLabel
- 11
Rau B, Schilling M K, Beger H G.
Laboratory markers of severe acute pancreatitis.
Dig Dis.
2004;
22
247-257
MissingFormLabel
- 12
Lankisch G P, Büchler M W.
Akute Pankreatitis. Update: Diagnostik und Therapie 2000.
Deutsches Ärzteblatt, Jg 97.
2000;
Ausgabe 31 - 32
A-2106-2113
MissingFormLabel
- 13
Banks P A.
Practical guidelines in acute pancreatitis.
Am J Gastroenterol.
1997;
92
377-386
MissingFormLabel
- 14
Steinberg W, Tenner S.
Acute pancreatitis.
N Engl J Med.
1994;
33
1198-1210
MissingFormLabel
- 15
Eckerwall G, Olin H, Andersson B. et al .
Fluid resuscitation and nutritional support during severe acute pancreatitis in the
past: what have we learned and how can we do better?.
Clin Nutr.
2006;
25
497-504
MissingFormLabel
- 16
Baillargeon J D, Orav J, Ramagopal V. et al .
Hemoconcentration as an early risk factor for necrotizing pancreatitis.
Am J Gastroenterol.
1998;
93
2130-2314
MissingFormLabel
- 17
Brown A, Baillargeon J, Hughes M. et al .
Can fluid resuscitation prevent pancreatitic necrosis in severe acute pancreatitis?.
Pancreatology.
2002;
2
104-107
MissingFormLabel
- 18
Schölmerich J.
Aktuelle Diagnostik der akuten Pankreatitis.
Z Gastroenterol.
1997;
35 (Suppl 1)
63-75
MissingFormLabel
- 19
Reuter D A, Goetz A E.
Messung des Herzzeitvolumens.
Anaesthesist.
2005;
54
1135-1153
MissingFormLabel
- 20
Perthig K, Figulla H R.
Kardiopulmonales Monitoring bei gastroenterologischen und renalen Notfällen.
Internist.
2005;
46
310-314
MissingFormLabel
- 21
Merril E W.
Rheology of blood.
Physiol Rev.
1969;
49
863-888
MissingFormLabel
- 22
Lowe G OD.
Blood rheology in vitro and in vivo.
Bailleres Clin Hematol.
1987;
1
587
MissingFormLabel
- 23
Geheb M.
Clinical approach to the hyperosmolar patient.
Crit Care Clin.
1987;
5
797-815
MissingFormLabel
- 24 Rose B D. The total body water and the plasma sodium concentration. Clinical physiology of acid-base and electrolyte disorders New York; Mc Graw-Hill 1994 4th ed: 219-234
MissingFormLabel
- 25
Toprak A, Koc M, Tezcan H. et al .
Inferior vena cava diameter determines left ventricular geometry in continuous ambulatory
peritoneal dialysis patients: an echocardiographic study.
Nephrol Dial Transplant.
2003;
18
2128-2133
MissingFormLabel
- 26
Voga G, Krivec B.
Echocardiography in the intensive care unit.
Curr Opin Crit Care.
2000;
6
207-213
MissingFormLabel
- 27
Hosoda K, Nakao K, Mukoyama M. et al .
Expression of brain natriuretic peptide gene in human heart. Production in the ventricle.
Hypertension.
1991;
17
1152-1255
MissingFormLabel
- 28
Wiese S, Breyer T, Dragu A. et al .
Gene expression of brain natriuretic peptide in isolated aria land ventricular human
myocardium: Influence of angiotensin II and diastolic fiber length.
Circulation.
2000;
102
3074-3079
MissingFormLabel
- 29
Nakagawa O, Ogawa Y, Itoh H. et al .
Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide
in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an „emergency”
cardiac hormone against ventricular overload.
J Clin Invest.
1995;
96
1280-1287
MissingFormLabel
- 30
Marcus L S, Hart D, Packer M. et al .
Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion
in patients with congestive heart failure. A double-blind, placebo-controlled, randomized
crossover-trial.
Circulation.
1996;
94
3184-3189
MissingFormLabel
- 31
Holmes S J, Espiner E A, Richards A M. et al .
Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal
man.
J Clin Endocrinol Metab.
1993;
76
91-96
MissingFormLabel
- 32
Lemos J A, McGuire D K, Drazner M H.
B-type natriuretic peptide in cardiovascular disease.
Lancet.
2003;
362
316-322
MissingFormLabel
- 33
Doust J A, Glasziou P P, Pietrzak E de. et al .
A systematic review of the diagnostic accuracy of natriuretic peptides for heart failure.
Arch Intern Med.
2004;
164
1978-1984
MissingFormLabel
- 34
Magga J, Puhakka M, Hietakorpi S. et al .
Atrial nariuetic peptide, B-type natriuretic peptide, and serum collagen markers after
acute myocardial infarction.
J Appl Physiol.
2004;
96
1306-1311
MissingFormLabel
- 35
Stein B C, Levin R I.
Natriuretic peptides: physiology, therapeutic potential, and risk stratification in
ischemic heart disease.
Am Heart J.
1998;
135 (5 pt 1)
914-923
MissingFormLabel
- 36
Maisel A, Krishnaswamy P, Nowak R. et al .
Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart
failure.
N Engl J Med.
2002;
347
161-167
MissingFormLabel
- 37
Mc Cullough P A, Hollander J E, Nowak R M. et al .
Uncovering heart failure in patients with a history of pulmonary disease: rationale
for the early use of B-type Natriuretic Peptide in the emergency department.
Acad Emerg Med.
2003;
10
198-204
MissingFormLabel
- 38
Yamamoto K, Burnett J C Jr, Jougasaki M. et al .
Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic
and diastolic dysfunction and ventricular hypertrophy.
Hypertension.
1996;
28
988-994
MissingFormLabel
- 39
Barclay J L, Kruszewski K, Croal B L. et al .
Relation of left atrial volume to B-type natriuretic peptide levels in patients with
stable chronic heart failure.
Am J Cardiol.
2006;
98
98-101
MissingFormLabel
- 40
Heringlake M, Heide C, Bahlmann L. et al .
Effects of tilting and volume loading on plasma levels and urinary excretion of relaxin,
NT-pro-ANP, and NT-pro-BNP in male volunteers.
J Appl Physiol.
2004;
97
173-179
MissingFormLabel
- 41
Tomarus K i K, Aria M, Yokoyama T. et al .
Transcriptional activation of the BNP gene by lipopolysaccharide is mediated through
GATA elements in neonatal rat cardiac myocytes.
J Mol Cell Cardiol.
2002;
34
649-659
MissingFormLabel
- 42
He Q, LaPointe M C.
Interleukin-1beta regulation of the human brain natriuretic peptide promotor involves
Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes.
Hypertension.
1999;
33
283-289
MissingFormLabel
- 43
Haug C, Metzele A, Steffgen J. et al .
Increased brain natriuretic peptide and atrial natriuretic peptide plasma concentrations
in dialysis-dependent chronic renal failure and in patients with elevated left ventricular
filling pressure.
Clin Investig.
1994;
72
430-4
MissingFormLabel
- 44
James K B, Troughton R W, Feldschuh J. et al .
Blood volume and brain natriuretic peptide in congestive heart failure: a pilot study.
Am Heart J.
2005;
150
984
MissingFormLabel
- 45
Ishizaka Y, Yamamoto Y, Fukunaga T. et al .
Plasma concentration of human brain natriuretic peptide in patients on hemodialysis.
Am J Kidney Dis.
1994;
24
461-72
MissingFormLabel
- 46
Ishibe S, Peixoto A J.
Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis
patients: implications in clinical practice.
Semin Dial.
2004;
17
37-43
MissingFormLabel
- 47
Fagugli R M, Palumbo B, Ricciardi D. et al .
Association between Brain Natriuretic Peptide and Extracellular Water in Hemodialysis
Patients.
Nephron Clinical Practice.
2003;
95
c60-c66
MissingFormLabel
- 48
Crozier J E, McKee R F.
Is the landmark technique safe for the insertion of subclavian venous lines?.
Surgeon.
2005;
3
277-305
MissingFormLabel
- 49
Martin M J, Husain F A, Piesman M. et al .
Is routine ultrasound guidance for central line placement beneficial? A prospective
analysis.
Curr Surg.
2004;
61
71-74
MissingFormLabel
- 50
McGee D, Gould M K.
Preventing complications of central venous catheterization.
N Engl J Med.
2003;
348
1123-1133
MissingFormLabel
- 51
Desmond J.
Is the central venous pressure reading equally reliable if the central line is inserted
via the femoral vein.
Emerg Med J.
2003;
20
467-469
MissingFormLabel
- 52
Swan H J, Ganz W, Forrester J. et al .
Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter.
N Engl J Med.
1970;
283
447
MissingFormLabel
- 53
Dummerhill E M, Baram M.
Principles of pulmonary artery catheterization in the critically ill.
Lung.
2005;
183
209-219
MissingFormLabel
- 54
Ivanov R, Allen J, Calvin J E.
The incidence of major morbidity in critically ill patients managed with pulmonary
artery catheters: A meta-analysis.
Crit Care Med.
2000;
28
615
MissingFormLabel
- 55
Connors A F Jr, Speroff T, Dawson N V. et al .
The effectiveness of right heart catheterization in the initial care of critically
ill patients.
JAMA.
1996;
276
889
MissingFormLabel
- 56
Sandham J D, Hull R D, Brant R F. et al .
A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk
surgical patients.
N Engl J Med.
2003;
348
5
MissingFormLabel
- 57
Sherman S V, Wall M H, Kennedy D J. et al .
Do pulmonary artery catheters cause or increase tricuspid or pulmonic valvular regurgitation?.
Anest Analg.
2001;
92
1117-1122
MissingFormLabel
- 58
Harvey S, Harrison D A, Singer M. et al .
Assessment of the clinical effectiveness of pulmonary artery catheters in management
of patients in intensive care (PAC-Man): a randomised controlled trial.
Lancet.
2005;
366
472-477
MissingFormLabel
- 59
Sandham J D, Hull R D, Brant R F. et al .
A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk
surgical patients.
N Engl J Med.
2003;
348
5-14
MissingFormLabel
- 60
Sakka S G, Ruhl CC, Pfeiffer UJ. et al .
Assessment of cardiac preload and extravascular lung water by single transpulmonary
thermodilution.
Intensive Care Med.
2000;
26
180-187
MissingFormLabel
- 61
Della R occa G, Costa M G, Pompei L. et al .
Continous and intermittent cardiac output measurement: pulmonary artery catheter versus
aortic transpulmonary technique.
Br J Anaesth.
2002;
88
350-356
MissingFormLabel
- 62
Haller M, Zöller C, Briegel J. et al .
Evaluation of a new continous thermodilution cardiac output monitor in critically
ill patients. A prospective criterion standard study.
Crit Care Med.
1995;
23
860-866
MissingFormLabel
- 63
Felbinger T W, Reuter D A, Eltzschig H K. et al .
Cardiac index measurements under rapid preload changes: a comparison of pulmonary
artery thermodilution and arterial pulse contour anlysis.
J Clin Anaesth.
2005;
17
241-248
MissingFormLabel
- 64
Sakka S G, Reinhart K, Meier-Hellmann A.
Comparison of pulmonary arterial and arterial thermodilution cardiac output in critically
ill patients.
Intensive Care Med.
1999;
25
843-846
MissingFormLabel
- 65
Reuter D A, Kirchner A, Felbinger T W. et al .
Usefulness of left ventricular stroke volume variation to assess fluid responsiveness
in patients with reduced cardiac function.
Crit Care Med.
2003;
31
1399-1404
MissingFormLabel
- 66 Marino P L. Der Pulmonalarterienkatheter. Marino PL, Taeger K Das ICU Buch München; Urban & Fischer 2005 3th ed: 114
MissingFormLabel
Dr. Felix Gundling
Second Department of Medicine, Bogenhausen Academic Teaching Hospital, Technical University
of Munich
Englschalkinger Straße 77
81925 Munich
Phone: ++49/89/92 70 20 61
Fax: ++49/89/92 70 24 86
Email: Gastroenterologie@kh-bogenhausen.de