Abstract
Ozone affects adult trees significantly, but effects on stem growth are hard to prove
and difficult to correlate with the primary sites of ozone damage at the leaf level.
To simulate ozone effects in a mechanistic way, at a level relevant to forest stand
growth, we developed a simple ozone damage and repair model (CASIROZ model) that can
be implemented into mechanistic photosynthesis and growth models. The model needs
to be parameterized with cuvette measurements on net photosynthesis and dark respiration.
As the CASIROZ ozone sub-model calculates effects of the ozone flux, a reliable representation
of stomatal conductance and therefore ozone uptake is necessary to allow implementation
of the ozone sub-model. In this case study the ozone sub-model was used in the ANAFORE
forest model to simulate gas exchange, growth, and allocation. A preliminary run for
adult beech (Fagus sylvatica) under different ozone regimes at the Kranzberg forest site (Germany) was performed.
The results indicate that the model is able to represent the measured effects of ozone
adequately, and to distinguish between immediate and cumulative ozone effects. The
results further help to understand ozone effects by distinguishing defence from damage
and repair. Finally, the model can be used to extrapolate from the short-term results
of the field study to long-term effects on tree growth. The preliminary simulations
for the Kranzberg beech site show that, although ozone effects on yearly growth are
variable and therefore insignificant when measured in the field, they could become
significant at longer timescales (above 5 years, 5 % reduction in growth). The model
offers a possible explanation for the discrepancy between the significant effects
on photosynthesis (10 to 30 % reductions simulated), and the minor effects on growth.
This appears to be the result of the strong competition and slow growth of the Kranzberg
forest, and the importance of stored carbon for the adult beeches (by buffering effects
on carbon gain). We finally conclude that inclusion of ozone effects into current
forest growth and yield models can be an important improvement into their overall
performance, especially when simulating younger and less dense forests.
Key words
Beech -
Fagus sylvatica L. - forest - mechanistic model - ozone - respiration - stomatal flux
References
1
Amthor J. S..
The Mc-Cree-de Wit - Penning de Vries - Thornley respiration paradigms: 30 years later.
Annals of Botany.
(2000);
86
1-20
2
Andersen C. P..
Source-sink balance and carbon allocation below ground in plants exposed to ozone.
New Phytologist.
(2003);
157
213-228
3
Bortier K., De Temmerman L., Ceulemans R..
Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica) : a comparison.
Environmental Pollution.
(2000);
109
509-516
4
Bussotti F., Pancrazi M., Matteucci G., Gerosa G..
Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent
monitoring plots in Italy.
Tree Physiology.
(2005);
25
211-219
5
Crous K. Y., Vandermeiren K., Ceulemans R..
Physiological responses to cumulative ozone uptake in two white clover (Trifolium repens L. cv. Regal) clones with different ozone sensitivity.
Environmental and Experimental Botany.
(2006);
58
169-179
6
Deckmyn G., Evans S. P., Randle T. J..
Refined pipe theory for mechanistic modelling of wood development.
Tree Physiology.
(2006);
26
703-717
7
Dewar R. C..
The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension
within a spatially aggregated picture of guard cell function.
Plant, Cell and Environment.
(2002);
25
1383-1398
8
Dizengremel P..
Effects of ozone on the carbon metabolism of forest trees.
Plant Physiology and Biochemistry.
(2001);
39
729-742
9
Elvira S., Bermejo V., Manrique E., Gimeno B..
On the response of two populations of Quercus coccifera to ozone and its relationship with ozone uptake.
Atmospheric Environment.
(2004);
38
2305-2311
10
Emberson L. D., Ashmore M. R., Cambridge H. M., Simpson D., Tuovinen J.-P..
Modelling stomatal ozone flux across Europe.
Environmental Pollution.
(2000);
109
403-413
11
Farquhar G. D., von Caemmerer S., Berry J. A..
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.
Planta.
(1980);
149
78-90
12
Fuhrer J., Skärby L., Ashmore M. R..
Critical levels for ozone effects on vegetation in Europe.
Environmental Pollution.
(1997);
97
91-106
13
Herbinger K., Then C., Low M., Haberer K., Alexous M., Koch N., Remele K., Heerdt C.,
Grill D., Rennenberg H..
Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative
defence in Fagus sylvatica under experimental free-air ozone exposure.
Environmental Pollution.
(2005);
137
476-482
14
Jarvis P. G..
The interpretation of the variations in leaf water potential and stomatal conductance
found in canopies in the field.
Philisophical Transactions of the Royal Society.
(1976);
273
593-610
15
Karnosky D. F., Pregitzer K. S., Zak D. R., Kubiske M. E., Hendrey G. R., Weinstein D.,
Nosal M., Percy K. E..
Scaling ozone effects of forest trees to the ecosystem level in a changing climate.
Plant, Cell and Environment.
(2005);
28
965-981
16
Karnosky D. F., Zak D. R., Pregitzer K. S., Awmack C. S., Bockheim J. G., Dickson R. E.,
Hendrey G. R., Host G. E., King J. S., Kopper B. J., Kruger E. L., Kubiske M. E.,
Lindroth R. L., Mattson W. J., McDonald E. P., Noormets A., Oksanen E., Parsons W. F. J.,
Percy K. E., Podila G. K., Riemenschneider D. E., Sharma P., Thakur R., Sôber A.,
Sôber J., Jones W. S., Anttonen S., Vapaavuori E., Mankovska B., Heilman W., Isebrands G..
Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2 : a synthesis of molecular to ecosystem results from the Aspen FACE project.
Functional Ecology.
(2003);
17
289-304
17
Kelting D. L., Burger J. A., Edwards G. S..
The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.).
Forest Ecology and Management.
(1995);
79
197-206
18
King J. S., Kubiske M. E., Pretziger K. S., Hendrey G. R., McDonald E. P., Giardina C. P.,
Quinn V. S., Karnosky D. F..
Tropospheric O3 comprises net primary production in young stands of trembling aspen, paper birch
and sugar maple in response to elevated atmospheric CO2 .
New Phytologist.
(2005);
168
623-636
19
Kolb T. E., Fredericksen T. S., Steiner K. C., Skelly J. M..
Issues in scaling tree size and age responses to ozone.
Environmental Pollution.
(1997);
98
195-208
20
Landolt W., Buhlmann U., Bleuler P., Bucher J..
Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) .
Environmental Pollution.
(2000);
109
473-478
21
Langebartels C., Heller W., Führer G., Lippert M., Simons S., Sandermann H. J..
Memory effects in the action of ozone on conifers.
Ecotoxicology and Environmental Safety.
(1998);
41
62-72
22
Lindahl B. O., Taylor A. F. S., Finlay R. D..
Defining nutritional constraints on carbon cycling in boreal forests - towards a less
“phytocentric” approach.
Plant and Soil.
(2002);
242
123-135
41
Löw M., Häberle K.-H., Warren C. R., Matyssek R..
O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance
of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.
Plant Biology.
(2007);
9
197-206
23
Maier-Maercker U..
Predisposition of trees to drought stress by ozone.
Tree Physiology.
(1998);
19
71-78
24
Matyssek R., Wieser G., Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Winkler J. B.,
Baumgarten M., Haberle K.-H., Grams T..
Comparison between AOT40 and ozone uptake in forest trees of different species, age
and site conditions.
Atmospheric Environment.
(2004);
38
2271-2281
42
Matyssek R., Bahnweg G., Ceulemans R., Fabian P., Grill D., Hanke D. E., Kraigher H.,
Oßwald W., Rennenberg H., Sandermann H., Tausz M., Wieser G..
Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment - experimental risk assessment of mitigation by chronic
ozone impact.
Plant Biology.
(2007);
9
163-180
25
Musselman R. C., Massman W..
Ozone flux to vegetation and its relationship to plant response and ambient air quality
standards.
Atmospheric Environment.
(1998);
33
65-73
26
Nikolov N., Zeller K..
Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial
ecosystems and the atmosphere. I: Model description.
Environmental Pollution.
(2003);
124
231-246
27
Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Leuchner M., Lütz C., Liu X.,
Löw M., Winkler J. B., Grams T. E. E., Häberle K. H., Werner H., Fabian P., Rennenberg H.,
Matyssek R..
Comparison of ozone uptake and sensitivity between a phytotron study with young beech
and a field experiment with adult beech (Fagus sylvatica) .
Environmental Pollution.
(2005);
137
494-506
28
Oksanen E..
Responses of selected birch (Betula pendula R.) clones to ozone change over time.
Plant, Cell and Environment.
(2003);
26
875-886
29
Ollinger S. V., Aber J. D., Reich P. B..
Simulating ozone effects on forest productivity: interactions among leaf-, canopy-,
and stand-level processes.
Ecological Applications.
(1997);
7
1237-1251
30
Ollinger S. V., Aber J. D., Reich P. B., Freuder R. J..
Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests.
Global Change Biology.
(2002);
8
545-562
43
Op de Beeck M., Löw M., Verbeeck H., Deckmyn G..
Suitability of a combined stomatal conductance and photosynthesis model for calculation
of leaf-level ozone fluxes.
Plant Biology.
(2007);
9
331-341
31
Paoletti E., Grulke N..
Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses.
Environmental Pollution.
(2005);
137
483-493
32
Retzlaff W. A., Arthur M. A., Grulke N. E., Weinstein D. A., Gollands B..
Use of a single-tree simulation model to predict effects of ozone and drought on growth
of a white fir tree.
Tree Physiology.
(2000);
20
195-202
33
Samuelson L., Kelly J. M..
Scaling ozone effects from seedlings to forest trees, Tansley review no. 21.
New Phytologist.
(2001);
149
21-41
34
Schaub M., Skelly J. M., Steiner K. C., Davis D. D., Pennypacker S. P., Zhang J.,
Ferdinand J. A., Savage J. E., Stevenson R..
Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone.
Environmental Pollution.
(2003);
124
307-320
35
Schaub M., Skelly J. M., Zhang J. W., Ferdinand J. A., Savage J. E., Stevenson R. E.,
Davis D. D., Steiner K..
Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions.
Environmental Pollution.
(2005);
133
553-567
36
Simpson D., Tuovinen J.-P., Emberson L. D., Ashmore M. R..
Characteristics of an ozone deposition module II: sensitivity analysis.
Water, Air and Soil Pollution.
(2003);
143
123-137
44
Then C., Herbinger K., Blumenröther M., Haberer K., Heerdt C., Oßwald W., Rennenberg H.,
Grill D., Tausz M., Wieser G..
Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns.
Plant Biology.
(2007);
9
309-319
37
Torsethaugen G., Pell E. J., Assmann S. M..
Ozone inhibits guard cell K+ channels implicated in stomatal opening.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
13577-13582
38
Warren C. R., Löw M., Matyssek R., Tausz M..
Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation.
Environmental and Experimental Botany.
(2006);
39
Wieser G., Hecke K., Tausz M., Häberle K.-H., Grams T. E. E., Matyssek R..
The influence of microclimate and tree age on the defense capacity of European beech
(Fagus sylvatica L.) against oxidative stress.
Annals of Forest Science.
(2003);
60
131-135
40
Wipfler P., Seifert T., Heerdt C., Werner H., Pretzsch H..
Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation.
Plant Biology.
(2005);
7
611-618
G. Deckmyn
Research Group Plant and Vegetation Ecology University of Antwerpen (CDE)
Universiteitsplein 1
2610 Wilrijk/Antwerpen
Belgium
eMail: gaby.deckmyn@ua.ac.be
Guest Editor: R. Matyssek