Plant Biol (Stuttg) 2007; 9(2): 320-330
DOI: 10.1055/s-2006-924762
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Modelling Ozone Effects on Adult Beech Trees through Simulation of Defence, Damage, and Repair Costs: Implementation of the CASIROZ Ozone Model in the ANAFORE Forest Model

G. Deckmyn1 , M. Op de Beeck1 , M. Löw2 , C. Then3 , H. Verbeeck1 , P. Wipfler4 , R. Ceulemans1
  • 1Research Group Plant and Vegetation Ecology, University of Antwerpen (CDE), Universiteitsplein 1, 2610 Wilrijk/Antwerpen, Belgium
  • 2Ecophysiology of Plants, Technische Universität München, Am Hochanger 13, 85354 Freising, Germany
  • 3Department of Forest Tree Physiology, Federal Research and Training Centre for Forests, Rennweg 1, 6020 Innsbruck, Austria
  • 4Chair of Forest Yield Science, Technische Universität München, Am Hochanger 13, 85354 Freising, Germany
Further Information

Publication History

Received: June 2, 2006

Accepted: October 11, 2006

Publication Date:
13 March 2007 (online)

Abstract

Ozone affects adult trees significantly, but effects on stem growth are hard to prove and difficult to correlate with the primary sites of ozone damage at the leaf level. To simulate ozone effects in a mechanistic way, at a level relevant to forest stand growth, we developed a simple ozone damage and repair model (CASIROZ model) that can be implemented into mechanistic photosynthesis and growth models. The model needs to be parameterized with cuvette measurements on net photosynthesis and dark respiration. As the CASIROZ ozone sub-model calculates effects of the ozone flux, a reliable representation of stomatal conductance and therefore ozone uptake is necessary to allow implementation of the ozone sub-model. In this case study the ozone sub-model was used in the ANAFORE forest model to simulate gas exchange, growth, and allocation. A preliminary run for adult beech (Fagus sylvatica) under different ozone regimes at the Kranzberg forest site (Germany) was performed. The results indicate that the model is able to represent the measured effects of ozone adequately, and to distinguish between immediate and cumulative ozone effects. The results further help to understand ozone effects by distinguishing defence from damage and repair. Finally, the model can be used to extrapolate from the short-term results of the field study to long-term effects on tree growth. The preliminary simulations for the Kranzberg beech site show that, although ozone effects on yearly growth are variable and therefore insignificant when measured in the field, they could become significant at longer timescales (above 5 years, 5 % reduction in growth). The model offers a possible explanation for the discrepancy between the significant effects on photosynthesis (10 to 30 % reductions simulated), and the minor effects on growth. This appears to be the result of the strong competition and slow growth of the Kranzberg forest, and the importance of stored carbon for the adult beeches (by buffering effects on carbon gain). We finally conclude that inclusion of ozone effects into current forest growth and yield models can be an important improvement into their overall performance, especially when simulating younger and less dense forests.

References

  • 1 Amthor J. S.. The Mc-Cree-de Wit - Penning de Vries - Thornley respiration paradigms: 30 years later.  Annals of Botany. (2000);  86 1-20
  • 2 Andersen C. P.. Source-sink balance and carbon allocation below ground in plants exposed to ozone.  New Phytologist. (2003);  157 213-228
  • 3 Bortier K., De Temmerman L., Ceulemans R.. Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison.  Environmental Pollution. (2000);  109 509-516
  • 4 Bussotti F., Pancrazi M., Matteucci G., Gerosa G.. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy.  Tree Physiology. (2005);  25 211-219
  • 5 Crous K. Y., Vandermeiren K., Ceulemans R.. Physiological responses to cumulative ozone uptake in two white clover (Trifolium repens L. cv. Regal) clones with different ozone sensitivity.  Environmental and Experimental Botany. (2006);  58 169-179
  • 6 Deckmyn G., Evans S. P., Randle T. J.. Refined pipe theory for mechanistic modelling of wood development.  Tree Physiology. (2006);  26 703-717
  • 7 Dewar R. C.. The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function.  Plant, Cell and Environment. (2002);  25 1383-1398
  • 8 Dizengremel P.. Effects of ozone on the carbon metabolism of forest trees.  Plant Physiology and Biochemistry. (2001);  39 729-742
  • 9 Elvira S., Bermejo V., Manrique E., Gimeno B.. On the response of two populations of Quercus coccifera to ozone and its relationship with ozone uptake.  Atmospheric Environment. (2004);  38 2305-2311
  • 10 Emberson L. D., Ashmore M. R., Cambridge H. M., Simpson D., Tuovinen J.-P.. Modelling stomatal ozone flux across Europe.  Environmental Pollution. (2000);  109 403-413
  • 11 Farquhar G. D., von Caemmerer S., Berry J. A.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 12 Fuhrer J., Skärby L., Ashmore M. R.. Critical levels for ozone effects on vegetation in Europe.  Environmental Pollution. (1997);  97 91-106
  • 13 Herbinger K., Then C., Low M., Haberer K., Alexous M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H.. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.  Environmental Pollution. (2005);  137 476-482
  • 14 Jarvis P. G.. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.  Philisophical Transactions of the Royal Society. (1976);  273 593-610
  • 15 Karnosky D. F., Pregitzer K. S., Zak D. R., Kubiske M. E., Hendrey G. R., Weinstein D., Nosal M., Percy K. E.. Scaling ozone effects of forest trees to the ecosystem level in a changing climate.  Plant, Cell and Environment. (2005);  28 965-981
  • 16 Karnosky D. F., Zak D. R., Pregitzer K. S., Awmack C. S., Bockheim J. G., Dickson R. E., Hendrey G. R., Host G. E., King J. S., Kopper B. J., Kruger E. L., Kubiske M. E., Lindroth R. L., Mattson W. J., McDonald E. P., Noormets A., Oksanen E., Parsons W. F. J., Percy K. E., Podila G. K., Riemenschneider D. E., Sharma P., Thakur R., Sôber A., Sôber J., Jones W. S., Anttonen S., Vapaavuori E., Mankovska B., Heilman W., Isebrands G.. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project.  Functional Ecology. (2003);  17 289-304
  • 17 Kelting D. L., Burger J. A., Edwards G. S.. The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.).  Forest Ecology and Management. (1995);  79 197-206
  • 18 King J. S., Kubiske M. E., Pretziger K. S., Hendrey G. R., McDonald E. P., Giardina C. P., Quinn V. S., Karnosky D. F.. Tropospheric O3 comprises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2.  New Phytologist. (2005);  168 623-636
  • 19 Kolb T. E., Fredericksen T. S., Steiner K. C., Skelly J. M.. Issues in scaling tree size and age responses to ozone.  Environmental Pollution. (1997);  98 195-208
  • 20 Landolt W., Buhlmann U., Bleuler P., Bucher J.. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris).  Environmental Pollution. (2000);  109 473-478
  • 21 Langebartels C., Heller W., Führer G., Lippert M., Simons S., Sandermann H. J.. Memory effects in the action of ozone on conifers.  Ecotoxicology and Environmental Safety. (1998);  41 62-72
  • 22 Lindahl B. O., Taylor A. F. S., Finlay R. D.. Defining nutritional constraints on carbon cycling in boreal forests - towards a less “phytocentric” approach.  Plant and Soil. (2002);  242 123-135
  • 41 Löw M., Häberle K.-H., Warren C. R., Matyssek R.. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.  Plant Biology. (2007);  9 197-206
  • 23 Maier-Maercker U.. Predisposition of trees to drought stress by ozone.  Tree Physiology. (1998);  19 71-78
  • 24 Matyssek R., Wieser G., Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Winkler J. B., Baumgarten M., Haberle K.-H., Grams T.. Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions.  Atmospheric Environment. (2004);  38 2271-2281
  • 42 Matyssek R., Bahnweg G., Ceulemans R., Fabian P., Grill D., Hanke D. E., Kraigher H., Oßwald W., Rennenberg H., Sandermann H., Tausz M., Wieser G.. Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment - experimental risk assessment of mitigation by chronic ozone impact.  Plant Biology. (2007);  9 163-180
  • 25 Musselman R. C., Massman W.. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards.  Atmospheric Environment. (1998);  33 65-73
  • 26 Nikolov N., Zeller K.. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description.  Environmental Pollution. (2003);  124 231-246
  • 27 Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Leuchner M., Lütz C., Liu X., Löw M., Winkler J. B., Grams T. E. E., Häberle K. H., Werner H., Fabian P., Rennenberg H., Matyssek R.. Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica).  Environmental Pollution. (2005);  137 494-506
  • 28 Oksanen E.. Responses of selected birch (Betula pendula R.) clones to ozone change over time.  Plant, Cell and Environment. (2003);  26 875-886
  • 29 Ollinger S. V., Aber J. D., Reich P. B.. Simulating ozone effects on forest productivity: interactions among leaf-, canopy-, and stand-level processes.  Ecological Applications. (1997);  7 1237-1251
  • 30 Ollinger S. V., Aber J. D., Reich P. B., Freuder R. J.. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests.  Global Change Biology. (2002);  8 545-562
  • 43 Op de Beeck M., Löw M., Verbeeck H., Deckmyn G.. Suitability of a combined stomatal conductance and photosynthesis model for calculation of leaf-level ozone fluxes.  Plant Biology. (2007);  9 331-341
  • 31 Paoletti E., Grulke N.. Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses.  Environmental Pollution. (2005);  137 483-493
  • 32 Retzlaff W. A., Arthur M. A., Grulke N. E., Weinstein D. A., Gollands B.. Use of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree.  Tree Physiology. (2000);  20 195-202
  • 33 Samuelson L., Kelly J. M.. Scaling ozone effects from seedlings to forest trees, Tansley review no. 21.  New Phytologist. (2001);  149 21-41
  • 34 Schaub M., Skelly J. M., Steiner K. C., Davis D. D., Pennypacker S. P., Zhang J., Ferdinand J. A., Savage J. E., Stevenson R.. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone.  Environmental Pollution. (2003);  124 307-320
  • 35 Schaub M., Skelly J. M., Zhang J. W., Ferdinand J. A., Savage J. E., Stevenson R. E., Davis D. D., Steiner K.. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions.  Environmental Pollution. (2005);  133 553-567
  • 36 Simpson D., Tuovinen J.-P., Emberson L. D., Ashmore M. R.. Characteristics of an ozone deposition module II: sensitivity analysis.  Water, Air and Soil Pollution. (2003);  143 123-137
  • 44 Then C., Herbinger K., Blumenröther M., Haberer K., Heerdt C., Oßwald W., Rennenberg H., Grill D., Tausz M., Wieser G.. Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns.  Plant Biology. (2007);  9 309-319
  • 37 Torsethaugen G., Pell E. J., Assmann S. M.. Ozone inhibits guard cell K+ channels implicated in stomatal opening.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 13577-13582
  • 38 Warren C. R., Löw M., Matyssek R., Tausz M.. Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation.  Environmental and Experimental Botany. (2006); 
  • 39 Wieser G., Hecke K., Tausz M., Häberle K.-H., Grams T. E. E., Matyssek R.. The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress.  Annals of Forest Science. (2003);  60 131-135
  • 40 Wipfler P., Seifert T., Heerdt C., Werner H., Pretzsch H.. Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation.  Plant Biology. (2005);  7 611-618

G. Deckmyn

Research Group Plant and Vegetation Ecology
University of Antwerpen (CDE)

Universiteitsplein 1

2610 Wilrijk/Antwerpen

Belgium

Email: gaby.deckmyn@ua.ac.be

Guest Editor: R. Matyssek

    >