Plant Biol (Stuttg) 2007; 9(3): 447-452
DOI: 10.1055/s-2006-924726
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

A Mutation in the AtPRP4 Splicing Factor Gene Suppresses Seed Development in Arabidopsis

S. Raab1 , S. Hoth1
  • 1Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058 Erlangen, Germany
Further Information

Publication History

Received: July 13, 2006

Accepted: October 4, 2006

Publication Date:
19 January 2007 (online)

Abstract

The spliceosome catalyzes alternative splicing of many genes in eucaryotic cells. This leads to the expression of distinct proteins. Components of the spliceosome are conserved in mammals and plants. Because splicing can be affected by environmental stress, we analyzed the regulation of splicing-related genes that encode small nuclear ribonucleoprotein particle (snRNP) proteins by the stress hormone abscisic acid (ABA). The transcript abundance of about 25 % of those genes was changed by at least 1.5-fold after addition of ABA. The U4/U6-specific snRNP gene AtPRP4 was strongly repressed by ABA. The homozygous knock-out of AtPRP4 resulted in the suppression of seed development suggesting that the gene product of this stress hormone-regulated gene is crucial for normal seed development.

References

  • 1 Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., Stevenson D. K., Zimmerman J., Barajas P., Cheuk R., Gadrinab C., Heller C., Jeske A., Koesema E., Meyers C. C., Parker H., Prednis L., Ansari Y., Choy N., Deen H., Geralt M., Hazari N., Hom E., Karnes M., Mulholland C., Ndubaku R., Schmidt I., Guzman P., Aguilar-Henonin L., Schmid M., Weigel D., Carter D. E., Marchand T., Risseeuw E., Brogden D., Zeko A., Crosby W. L., Berry C. C., Ecker J. R.. Genome-wide insertional mutagenesis of Arabidopsis thaliana. .  Science. (2003);  301 653-657
  • 2 Becker D., Kemper E., Schell J., Masterson R.. New plant binary vectors with selectable markers located proximal to the left T‐DNA border.  Plant Molecular Biology. (1992);  20 1195-1197
  • 3 Clough S. J., Bent A. F.. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. .  The Plant Journal. (1998);  16 735-743
  • 4 Forment J., Mulet J. M., Vicente O., Serrano R.. The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter.  Biochimica et Biophysica Acta. (2002);  1565 36-40
  • 5 Golovkin M., Reddy A. S.. Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts.  Plant Cell. (1996);  8 1421-1435
  • 6 Hanahan D.. Studies on transformation of Escherichia coli with plasmids.  Journal of Molecular Biology. (1983);  166 557-580
  • 7 Holsters M., Silva B., Van Vliet F., Genetello C., De Block M., Dhaese P., Depicker A., Inze D., Engler G., Villarroel R.. et al. . The functional organization of the nopaline A. tumefaciens plasmid pTiC58.  Plasmid. (1980);  3 212-230
  • 8 Hoth S., Morgante M., Sanchez J. P., Hanafey M. K., Tingey S. V., Chua N. H.. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.  Journal of Cell Science. (2002);  115 4891-4900
  • 9 Iida K., Seki M., Sakurai T., Satou M., Akiyama K., Toyoda T., Konagaya A., Shinozaki K.. Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences.  Nucleic Acids Research. (2004);  32 5096-5103
  • 10 Kazan K.. Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged.  Trends in Plant Science. (2003);  8 468-471
  • 11 Kuhn J. M., Schroeder J. I.. Impacts of altered RNA metabolism on abscisic acid signaling.  Current Opinion in Plant Biology. (2003);  6 463-469
  • 12 Lee B. H., Kapoor A., Zhu J., Zhu J. K.. STABILIZED1, a stress-upregulated nuclear protein, is required for Pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis.  Plant Cell. (2006);  18 1736-1749
  • 13 Liu S., Rauhut R., Vornlocher H. P., Luhrmann R.. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP.  RNA. (2006);  12 1418-1430
  • 14 Lorkovic Z. J., Wieczorek Kirk D. A., Lambermon M. H., Filipowicz W.. Pre-mRNA splicing in higher plants.  Trends in Plant Science. (2000);  5 160-167
  • 15 Macknight R., Bancroft I., Page T., Lister C., Schmidt R., Love K., Westphal L., Murphy G., Sherson S., Cobbett C., Dean C.. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains.  Cell. (1997);  89 737-745
  • 16 Maddock J. R., Weidenhammer E. M., Adams C. C., Lunz R. L., Woolford Jr. J. L.. Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations identify a negative regulator of PRP genes.  Genetics. (1994);  136 833-847
  • 17 Makarov E. M., Makarova O. V., Urlaub H., Gentzel M., Will C. L., Wilm M., Luhrmann R.. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome.  Science. (2002);  298 2205-2208
  • 18 Meyers B. C., Vu T. H., Tej S. S., Ghazal H., Matvienko M., Agrawal V., Ning J., Haudenschild C. D.. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing.  Nature Biotechnology. (2004);  22 1006-1011
  • 19 Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F.. The ancient regulatory-protein family of WD-repeat proteins.  Nature. (1994);  371 297-300
  • 20 Raab S., Toth Z., de Groot C., Stamminger T., Hoth S.. ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings.  Planta. (2006);  224 900-914
  • 21 Razem F. A., El-Kereamy A., Abrams S. R., Hill R. D.. The RNA-binding protein FCA is an abscisic acid receptor.  Nature. (2006);  439 290-294
  • 22 Reddy A. S.. Plant serine/arginine-rich proteins and their role in pre-mRNA splicing.  Trends in Plant Science. (2004);  9 541-547
  • 23 Sakamoto H., Maruyama K., Sakuma Y., Meshi T., Iwabuchi M., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions.  Plant Physiology. (2004);  136 2734-2746
  • 24 Schmid M., Davison T. S., Henz S. R., Pape U. J., Demar M., Vingron M., Scholkopf B., Weigel D., Lohmann J. U.. A gene expression map of Arabidopsis thaliana development.  Nature Genetics. (2005);  37 501-506
  • 25 Simpson G. G., Clark G. P., Rothnie H. M., Boelens W., van Venrooij W., Brown J. W.. Molecular characterization of the spliceosomal proteins U1A and U2B″ from higher plants.  The EMBO Journal. (1995);  14 4540-4550
  • 26 Wang B. B., Brendel V.. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing.  Genome Biology. (2004);  5 R102
  • 27 Wang B. B., Brendel V.. Genomewide comparative analysis of alternative splicing in plants.  Proceedings of the National Academy of Sciences of the USA. (2006);  103 7175-7180
  • 28 Xiong L., Gong Z., Rock C. D., Subramanian S., Guo Y., Xu W., Galbraith D., Zhu J. K.. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis.  Developmental Cell. (2001);  1 771-781
  • 29 Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W.. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.  Plant Physiology. (2004);  136 2621-2632

S. Hoth

Molekulare Pflanzenphysiologie
Friedrich-Alexander-Universität Erlangen-Nürnberg

Staudtstraße 5

91058 Erlangen

Germany

Email: shoth@biologie.uni-erlangen.de

Editor: M. Hawkesford