Plant Biol (Stuttg) 2006; 8(6): 765-769
DOI: 10.1055/s-2006-924540
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Respiration and Photosynthesis of Bladders and Leaves of Aquatic Utricularia Species

L. Adamec1
  • 1Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, 379 82 Třeboň, Czech Republic
Further Information

Publication History

Received: September 28, 2005

Accepted: August 10, 2006

Publication Date:
03 January 2007 (online)

Abstract

In aquatic species of carnivorous Utricularia, about 10 - 50 % of the total biomass consists of bladders. Utricularia bladders are physiologically very active organs though their chlorophyll content may greatly be reduced. To specify energetic costs of carnivory, respiration (RD) and net photosynthetic rate (PN) were compared in bladders and leaves or shoot segments of six aquatic Utricularia species with differentiated (U. ochroleuca, U. intermedia, U. floridana) or non-differentiated shoots (U. vulgaris, U. australis, U. bremii) under optimum conditions (20 °C, [CO2] 0.20 mM, 400 µmol m-2 s-1 PAR). RD of bladders of six Utricularia species (5.1 - 8.6 mmol kg-1 FW h-1) was 75 - 200 % greater, than that in leaves in carnivorous or photosynthetic shoots (1.7 - 6.1 mmol kg-1 FW h-1). Within individual species, this difference was statistically significant at p < 0.002 - 0.01. However, PN in photosynthetic leaves/shoots (40 - 117 mmol kg-1 FW h-1) exceeded that in bladders (5.2 - 14.7 mmol kg-1 FW h-1) 7 - 10 times. RD of empty bladders of U. ochroleuca was exactly the same as that in bladders containing prey. Though Utricularia bladders are essential for uptake of growth limiting mineral nutrients N and P from prey as the main benefit of carnivory, the current results support previous work showing that bladder function requires greater metabolic (maintenance) cost and very low photosynthetic efficiency (great RD : PN ratio).

References

  • 1 Adamec L.. Oxygen budget in the traps of Utricularia australis.  Carnivorous Plant Newsletter. (1995);  24 42-45
  • 2 Adamec L.. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa.  Aquatic Botany. (1997 a);  59 297-306
  • 3 Adamec L.. Mineral nutrition of carnivorous plants: a review.  Botanical Review. (1997 b);  63 273-299
  • 4 Adamec L.. Seasonal growth dynamics and overwintering of the aquatic carnivorous plant Aldrovanda vesiculosa at experimental field sites.  Folia Geobotanica. (1999);  34 287-297
  • 5 Adamec L.. Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory.  Biologia Plantarum. (2000);  43 113-119
  • 6 Adamec L.. Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation.  Biologia Plantarum. (2005);  49 247-255
  • 7 Bern A. L.. Studies on nitrogen and phosphorus uptake by the carnivorous bladderwort Utricularia foliosa L. in South Florida wetlands. MSc Thesis, Florida International University, Miami. (1997): 92
  • 8 Draxler G.. Gaswechselmessungen an Utricularia vulgaris. Ellenberg, H., ed. Ökosystemforschung. Berlin, Heidelberg, New York; Springer-Verlag (1973): 103-107
  • 9 Ellison A. M., Farnsworth E. J.. The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits.  American Journal of Botany. (2005);  92 1085-1093
  • 10 Ellison A. M., Gotelli N. J.. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 4409-4412
  • 11 Englund G., Harms S.. Effects of light and microcrustacean prey on growth and investment in carnivory in Utricularia vulgaris.  Freshwater Biology. (2003);  48 786-794
  • 12 Friday L. E.. Rapid turnover of traps in Utricularia vulgaris L.  Oecologia. (1989);  80 272-277
  • 13 Friday L. E.. Measuring investment in carnivory: seasonal and individual variation in trap number and biomass in Utricularia vulgaris L.  New Phytologist. (1992);  121 439-445
  • 14 Friday L. E., Quarmby C.. Uptake and translocation of prey-derived 15N and 32P in Utricularia vulgaris L.  New Phytologist. (1994);  126 273-281
  • 15 Givnish T. J., Burkhardt E. L., Happel R. E., Weintraub J. D.. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats.  The American Naturalist. (1984);  124 479-497
  • 16 Guisande C., Andrade C., Granado-Lorencio C., Duque S. R., Núñez-Avellaneda M.. Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory.  Aquatic Ecology. (2000);  34 137-142
  • 17 Guisande C., Aranguren N., Andrade-Sossa C., Prat N., Granado-Lorencio C., Barrios M. L., Bolivar A., Núñez-Avellaneda M., Duque S. R.. Relative balance of the cost and benefit associated with carnivory in the tropical Utricularia foliosa. .  Aquatic Botany. (2004);  80 271-282
  • 18 Jobson R. W., Nielsen R., Laakkonen L., Wikström M., Albert V. A.. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 18064-18068
  • 19 Jørgensen S. E.. Handbook of Environmental Data and Ecological Parameters. Copenhagen; ISEM (1979)
  • 20 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London; Academic Press Ltd (1989)
  • 21 Kahara S. N., Vermaat J. E.. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes.  Aquatic Botany. (2003);  75 217-227
  • 22 Knight S. E.. Costs of carnivory in the common bladderwort, Utricularia macrorhiza. .  Oecologia. (1992);  89 348-355
  • 23 Knight S. E., Frost T. M.. Bladder control in Utricularia macrorhiza: lake-specific variation in plant investment in carnivory.  Ecology. (1991);  72 728-734
  • 24 Laakkonen L., Jobson R. W., Albert V. A.. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): adaptive changes in cytochrome c oxidase (COX) provide respiratory power.  Plant Biology. (2006);  8 758-764
  • 25 Maberly S. C.. Photosynthesis by Fontinalis antipyretica. I. Interaction between photon irradiance, concentration of carbon dioxide and temperature.  New Phytologist. (1985);  100 127-140
  • 26 Madsen T. V., Sand-Jensen K.. Photosynthetic capacity, bicarbonate affinity and growth of Elodea canadensis exposed to different concentrations of inorganic carbon.  Oikos. (1987);  50 176-182
  • 27 Méndez M., Karlsson P. S.. Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment.  Oikos. (1999);  86 105-112
  • 28 Pokorný J., Ondok J. P.. Macrophyte Photosynthesis and Aquatic Environment. Prague; Academia (1991)
  • 29 Richards J. H.. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important?.  American Journal of Botany. (2001);  88 170-176
  • 33 Sirová D., Adamec L., Vrba J.. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia.  New Phytologist. (2003);  159 669-675
  • 30 Sydenham P. H., Findlay G. P.. Transport of solutes and water by resetting bladders of Utricularia.  Australian Journal of Plant Physiology. (1975);  2 335-351
  • 31 Taylor P.. The Genus Utricularia - A Taxonomic Monograph. Kew Bulletin Additional Series XIV. London; HMSO (1989)
  • 32 Thor G.. The genus Utricularia in the Nordic countries, with special emphasis on U. stygia and U. ochroleuca.  Nordic Journal of Botany. (1988);  8 213-225

L. Adamec

Institute of Botany of the Academy of Sciences of the Czech Republic
Section of Plant Ecology

Dukelská 135

379 82 Třeboň

Czech Republic

Email: adamec@butbn.cas.cz

Guest Editor: S. Porembski

    >