Plant Biol (Stuttg) 2006; 8(5): 636-645
DOI: 10.1055/s-2006-924102
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata Induce Different Defence Response Patterns in Tobacco, Tomato, and Potato

S. Desender1 , O. Klarzynski2 , P. Potin2 , M.-R. Barzic1 , D. Andrivon1 , F. Val1
  • 1UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, INRA-Agrocampus Rennes, 65 Rue de Saint Brieuc, 35042 Rennes Cedex, France
  • 2UMR 7139, Végétaux Marins et Biomolécules CNRS-Goemar-UPMC, Place Georges Tessier, 29680 Roscoff, France
Weitere Informationen

Publikationsverlauf

Received: March 15, 2006

Accepted: March 16, 2006

Publikationsdatum:
01. Juni 2006 (online)

Abstract

Lipopolysaccharides (LPS), ubiquitous cell surface components of Gram-negative bacteria, are directly implicated in plant/pathogen interactions. However, their perception by the plant, the subsequent signal transduction in both compatible and incompatible interactions, as well as the defence reactions induced in compatible interactions are as yet poorly understood. We focused on biochemical and physiological reactions induced in cell suspensions of three Solanaceae species (tobacco, tomato, and potato) by purified lipopolysaccharides from Pectobacterium atrosepticum (Pa), a pathogen of potato, and Pseudomonas corrugata (Psc), a pathogen of tomato. LPS Pa and LPS Psc caused a significant acidification of potato, tomato, and tobacco extracellular media, whereas laminarin (a linear β‐1,3 oligosaccharide elicitor) induced an alkalinisation in tobacco and tomato, but not in potato cell suspensions. None of the two LPS induced the formation of active oxygen species in any of the hosts, while laminarin induced H2O2 production in cells of tobacco but not of tomato and potato. In tomato cells, LPS Pa and LPS Psc induced a strong but transitory stimulation of lipoxygenase activity, whereas laminarin induced a stable or slightly increasing LOX activity over the first 24 h of contact. In tobacco, LOX activity was not triggered by either LPS, but significantly increased following treatment with laminarin. In potato, neither LPS nor laminarin induced LOX activity, in contrast with concentrated culture filtrate of Phytophthora infestans (CCF). These results demonstrate that LPS, as well as laminarin, are perceived in different ways by Solanaceae species, and possibly cultivars. They also suggest that defence responses modulated by LPS depend on plant genotypes rather than on the type of interaction.

References

  • 1 Achouak W., Thiéry J. M., Roubaud P., Heulin T.. Impact of crop management on intraspecific diversity of Pseudomonas corrugata in bulk soil.  FEMS Microbiology and Ecology. (2000);  31 11-19
  • 2 Andrivon D., Corbière R., Lucas J. M., Pasco C., Gravoueille J. M., Pellé R., Dantec J. P., Ellisèche D.. Resistance to late blight and soft rot in six progenies and glycoalkaloid contents in the tubers.  American Journal of Potato Research. (2003);  80 125-134
  • 3 Bedini E., De Castro C., Erbs G., Mangoni L., Dow J. M., Newman M. A., Parrilli M., Unverzagt C.. Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides.  Journal of the American Chemical Society. (2005);  127 2414-2416
  • 4 Bohland C., Balkenhohl T., Loers G., Feussner I., Grambow H. J.. Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate.  Plant Physiology. (1997);  114 679-685
  • 5 Catara V., Sutra L., Morineau A., Achouak W., Christen R., Gardan L.. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov.  International Journal of Systemic and Evolutionary Microbiology. (2002);  52 1749-1758
  • 6 Chaplin M. F.. Monosaccharides. Chaplin, M. F. and Kennedy, J. F., eds. Monosaccharide Analysis. Oxford; IRL Press (1986): 1-36
  • 7 Côté F., Hahn M. G.. Oligosaccharins: structures and signal transduction.  Plant Molecular Biology. (1994);  26 1379-1411
  • 8 Coventry H. S., Dubery I. A.. Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotiana tabacum. .  Physiology and Molecular Plant Pathology. (2001);  58 149-158
  • 9 Devlin W. S., Gustine D. L.. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction.  Plant Physiology. (1992);  100 1189-1195
  • 10 Dixon R. A., Palva N. L.. Stress-induced phenylpropanoid metabolism.  Plant Cell. (1995);  7 1085-1097
  • 11 Dow M., Newman M. A., von Roepenack E.. The induction and modulation of plant defence responses by bacterial lipopolysaccharides.  Annual Review of Phytopathology. (2000);  38 241-261
  • 12 Erbs G., Newman M. A.. The role of lipopolysaccharide in induction of plant defence responses.  Molecular Plant Pathology. (2003);  4 421-425
  • 13 Foissner I., Wendehenne D., Langebartels C., Durner J.. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco.  The Plant Journal. (2000);  6 817-824
  • 14 Gerber I. B., Zeidler D., Durner J., Dubery I. A.. Early perception responses of Nicotiana tabacum cells in response to lipopolysaccharides from Burkholderia cepacia.  Planta. (2004);  218 647-657
  • 15 Göbel C., Feussner I., Schmidt A., Scheel D., Sanchez-Serrano J., Hamberg M., Rosahl S.. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells.  Journal of Biological Chemistry. (2001);  276 6267-6273
  • 16 Göbel C., Feussner I., Hamberg M., Rosahl S.. Oxylipin profiling in pathogen-infected potato leaves.  Biochimica et Biophysica Acta. (2002);  1584 55-64
  • 17 Göbel C., Feussner I., Rosahl S.. Lipid peroxidation during the hypersensitive response in potato in the absence of 9-lipoxygenases.  Journal of Biological Chemistry. (2003);  52 52834-52840
  • 18 Graham T. L., Sequeira L., Huang T. S.. Bacterial lipopolysaccharide as inducers of disease resistance in tobacco.  Applied and Environmental Microbiology. (1977);  34 424-432
  • 19 Grant M., Mansfield J.. Early events in host-pathogen interactions.  Current Opinion in Plant Biology. (1999);  2 312-319
  • 20 Hammond-Kosack K. E., Jones J. D. G.. Resistance gene-dependent plant defence responses.  Plant Cell. (1996);  8 1773-1791
  • 22 Johnson K. G.. Isolation and purification of lipopolysaccharides. Memiller, J. N., Whistler, R. L., and Shaw, D. H., eds. Methods in Carbohydrate Chemistry. New York; Wiley (1993): 3-11
  • 23 Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J.. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria.  Analysis in Biochemistry. (1978);  85 6750-6754
  • 24 Kauffmann S., Dorey S., Fritig B.. Les stratégies de défense. Pour la Science, hors série (ed.) Paris, France; (2000): 116-121
  • 25 Klarzynski O., Plesse B., Joubert J. M., Yvin J. C., Kopp M., Kloareg B., Fritig B.. Linear β‐1,3 glucans are elicitors of defense response in tobacco.  Plant Physiology. (2000);  12 1027-1037
  • 26 Klement Z., Bozsó Z., Kecskés M. L., Besenyei E., Arnold C., Ott P. G.. Local early resistance of plant as the first line of defence against bacteria.  Pest Management Science. (2003);  59 465-474
  • 27 Kombrink E., Somssich I. E.. Defence responses of plants to pathogens.  Advances in Botanical Research. (1995);  21 1-34
  • 28 Laemmli U. K.. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. (1970);  222 680-685
  • 29 Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. Protein measurement with the Folin phenol reagent.  Journal of Biological Chemistry. (1951);  193 265-275
  • 30 Lukezic F. L.. Pseudomonas corrugata, a pathogen of tomato, isolated from symptomless alfalfa roots.  Phytopathology. (1979);  69 27-31
  • 31 Meyer A., Pühler A., Niehaus K.. The lipopolysaccharide of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell culture of Nicotiana tabacum. .  Planta. (2001);  213 214-222
  • 32 Montillet J. L., Agnel J. P., Ponchet M., Vailleau F., Roby D., Triantaphylidès C.. Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plant.  Plant Physiology and Biochemistry. (2002);  40 633-639
  • 33 Narváez-Vásquez J.. Expression of proteinase inhibitor genes in transgenic plants: effects on insect resistance, levels of expression in four plant species, and cellular compartmentalization. PhD Thesis, Washington State University, USA. (1991)
  • 34 Newman M. A., Daniels M. J., Dow J. M.. Lipopolysaccharide from Xanthomonas campestris induces defence-related gene expression in Brassica campestris. .  Molecular and Plant-Microbe Interaction. (1995);  8 778-780
  • 35 Newman M. A., Daniels M. J., Dow J. M.. The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper.  Molecular and Plant-Microbe Interaction. (1997);  10 926-928
  • 36 Newman M. A., Dow J. M., Daniels M. J.. Bacterial lipopolysaccharides and plant-pathogen interactions.  European Journal of Plant Pathology. (2001);  107 95-102
  • 37 Newman M. A., von Roepenack-Lahaye E., Parr A., Daniels M. J., Dow J. M.. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria.  The Plant Journal. (2002);  29 487-495
  • 38 Pérombelon M. C. M.. Potato disease caused by soft rot erwinias: an overview of pathogenesis.  Plant Pathology. (2002);  51 1-12
  • 39 Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zahringer U., Seydel U., Di Padova F., Schreier M., Brade H.. Bacterial endotoxin: molecular relationships of structure to activity and function.  The FASEB Journal. (1994);  8 217-225
  • 40 Rosenkranz A. R., Schmaldienst S., Stuhlmeier K. M., Chen W., Knapp W., Zlabinger G. J.. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate.  Journal of Immunological Methods. (1992);  156 39-45
  • 41 Schromm A. B., Brandenburg K., Loppnow H., Moran A. P., Koch M. H. J., Rietchel E. T. H., Seydel U.. Biological activities of lipopolysaccharides are determinate by the shape of their lipid A portion.  European Journal of Biochemistry. (2000);  267 2008-2013
  • 42 Shirasu K., Schulze-Lefert P.. Regulators of cell death in disease resistance.  Plant Molecular Biology. (2000);  44 371-385
  • 43 Sutra L., Siverio F., Lopez M. M., Hunault G., Bollet C., Gardan L.. Taxonomy of Pseudomonas strains isolated from tomato pith necrosis: emended description of Pseudomonas corrugata and proposal of three unnamed fluorescent Pseudomonas species.  International Journal of Systemic Bacteriology. (1997);  47 1020-1033
  • 44 Thordal-Christensen H.. Fresh insights into processes of non host resistance.  Current Opinion in Plant Biology. (2003);  6 351-357
  • 45 Tsai C., Frasch C. E.. A sensitive silver strain for detecting lipopolysaccharides in polyacrylamide gels.  Analytic Biochemistry. (1982);  119 115-119
  • 46 Westphal O., Jann K.. Bacterial lipopolysaccharides: extraction with phenol-water and further application of the procedure.  Methods in Carbohydrate Chemistry. (1965);  5 83-91
  • 47 Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung T., Bors W., Hutzler P., Durner J.. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes.  Proceedings of the National Academy of Sciences of the USA. (2004);  44 15811-15816
  • 48 Zhao J., Davis L. C., Verpoorte R.. Elicitor signal transduction leading to production of secondary metabolites.  Biotechnical Advance. (2005);  23 283-333

F. Val

UMR BiO3P
Biologie des Organismes et des Populations appliquée à la Protection des Plantes
INRA-Agrocampus Rennes

65 Rue de Saint Brieuc

35049 Rennes Cedex

France

eMail: florence.val@agrocampus-rennes.fr

Editor: C. M. J. Pieterse