Plant Biol (Stuttg) 2006; 8(3): 340-345
DOI: 10.1055/s-2006-923802
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Indole-3-Acetic Acid Protein Conjugates: Novel Players in Auxin Homeostasis

C. Seidel1 , A. Walz1 , 2 , S. Park3 , J. D. Cohen3 , J. Ludwig-Müller1
  • 1Institut für Botanik, Technische Universität Dresden, Zellescher Weg 22, 01062 Dresden, Germany
  • 2Vital Probes Inc., 1300 Old Plank Road, Mayfield, PA 18433, USA
  • 3Department of Horticultural Science, Center for Microbial and Plant Genomics, University of Minnesota, 305 Alderman Hall, Saint Paul, MN 55108, USA
Further Information

Publication History

Received: October 4, 2005

Accepted: December 12, 2005

Publication Date:
13 March 2006 (online)

Abstract

Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, iap1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the iap1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean iap1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.

References

  • 1 Andersson B., Sandberg G.. Identification of endogenous N-(3-indoleacetyl)aspartic acid in Scots pine (Pinus sylvestris L.) by combined gas chromatography-mass spectrometry, using high-performance liquid chromatography for quantification.  Journal of Chromatography. (1982);  238 151-156
  • 2 Bandurski R. S., Schulze A.. Concentrations of IAA and its derivatives in plants.  Plant Physiology. (1977);  60 211-213
  • 3 Bandurski R. S., Ueda M., Nicholls P. B.. Esters of indole-3-acetic acid and myo-inositol.  Annals of the New York Academy of Science. (1969);  165 655-667
  • 4 Bandurski R. S., Cohen J. D., Slovin J. P., Reinecke D. M.. Auxin biosynthesis and metabolism. Davies P. J., ed. Plant Hormones: Physiology, Biochemistry and Molecular Biology, 2nd ed. Boston; Kluwer Academic Publishers (1995): 39-65
  • 5 Bartel B., Fink G.. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates.  Science. (1995);  268 1745-1748
  • 6 Bartel B., LeClere S., Magidin M., Zolman B. K.. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation.  Journal of Plant Growth Regulation. (2001);  20 198-216
  • 7 Bialek K., Cohen J. D.. Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L.  Plant Physiology. (1986);  80 99-104
  • 12 Bialek K., Cohen J. D.. Quantitation of indole acetic acid conjugates in bean seeds by direct tissue hydrolysis.  Plant Physiology. (1989 a);  90 398-400
  • 13 Bialek K., Cohen J. D.. Free and conjugated indole-3-acetic acid in developing bean seeds.  Plant Physiology. (1989 b);  91 775-779
  • 9 Bialek K., Cohen J. D.. Amide-linked indoleacetic acid conjugates may control levels of indoleacetic acid in germinating seedlings of Phaseolus vulgaris.  Plant Physiology. (1992);  100 2002-2007
  • 10 Bialek K., Meudt W. J., Cohen J. D.. Indole-3-acetic acid (IAA) and IAA conjugates applied to bean stem sections: IAA content and the growth response.  Plant Physiology. (1983);  73 130-139
  • 14 Campanella J. J., Bakllamaja V., Restieri T., Vomacka M., Herron J., Patterson M., Shahtaheri S.. Isolation of an ILR1 auxin conjugate hydrolase homolog from Arabidopsis suecica.  Plant Growth Regulation. (2003 a);  39 175-181
  • 15 Campanella J. J., Ludwig-Müller J., Bakllamaja V., Sharma V., Cartier A.. ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificity.  Plant Growth Regulation. (2003 b);  41 215-223
  • 16 Campanella J. J., Olajide A., Magnus V., Ludwig-Müller J.. A novel auxin conjugate hydrolase from Triticum aestivum with substrate specificity for longer side-chain auxin amide conjugates.  Plant Physiology. (2004);  135 2230-2240
  • 17 Chen K.-H.. Analysis of indole-3-acetic acid in tobacco genetic tumors and wheat GA3 insensitive mutant “tom thumb”. PhD Dissertation, University of Maryland, College Park. (1987)
  • 18 Chisnell J. R., Bandurski R. S.. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot in Zea mays L.  Plant Physiology. (1988);  86 79-84
  • 19 Cohen J. D.. Identification and quantitative analysis of indole-3-acetyl-l-aspartate from seeds of Glycine max L.  Plant Physiology. (1982);  70 749-753
  • 20 Cohen J. D.. Metabolism of indole-3-acetic acid.  Plant Physiology. (1983);  14 41
  • 21 Cohen J. D., Bandurski R. S.. The chemistry and physiology of the bound auxins.  Annual Reviews of Plant Physiology. (1982);  33 403-430
  • 22 Cohen J. D., Slovin J. P., Bialek K., Chen K.-H., Derbyshire M.. Mass spectrometry, genetics and biochemistry: understanding the metabolism of indole-3-acetic acid. Steffens, G. L. and Rumsey, T. S., eds. Biomechanisms Regulating Growth and Development. Dordrecht; Kluwer (1988): 229-241
  • 23 Cohen J. D., Baldi B. G., Baraldi R., Bialek K., Chen K.-H., Slovin J. P.. Genetic and analytical techniques for auxin studies.  Giornale Botanico Italiano. (1989);  123 355-365
  • 24 Cohen J. D., Ilic N., Taylor R., Dunlap J. R., Slovin J. P.. Auxin localization and metabolism during fruit growth and ripening in cantaloupe. Lester, G. E. and Dunlap, J. R., eds. Proceedings Cucurbitaceae. Edinburgh; Gateway (1995)
  • 25 Davies P. J.. The plant hormones: their nature, occurrence, and function,. Davies P. J., ed. Plant Hormones: Biosynthesis, Signal Transduction, Action!. Dordrecht, The Netherlands; Kluwer Academic Publishers (2004): 1-15
  • 26 Davies R. T., Goetz D. H., Lasswell J., Anderson M. N., Bartel B.. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. .  Plant Cell. (1999);  11 365-376
  • 27 Domagalski W., Schulze A., Bandurski R. S.. Isolation and characterization of esters of indole-3-acetic acid from liquid endosperm of the horse chestnut (Aesculus species).  Plant Physiology. (1987);  84 1107-1113
  • 28 Hall P. J., Bandurski R. S.. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue.  Plant Physiology. (1986);  80 374-377
  • 29 Jackson R. G., Lim E. K., Li Y., Kowalczyk M., Sandberg G., Hoggett J., Ashford D. A., Bowles D. J.. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.  Journal of Biological Chemistry. (2001);  276 4350-4356
  • 30 Jackson R. G., Kowalczyk M., Li Y., Higgins G., Ross J., Sandberg G., Bowles D. J.. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines.  The Plant Journal. (2002);  32 573-583
  • 31 Jakubowska A., Kowalczyk S.. A specific enzyme hydrolyzing 6-O(4-O)-indol-3-ylacetyl-β-D-glucose in immature kernels of Zea mays.  Journal of Plant Physiology. (2005);  162 207-213
  • 32 Kesy J. M., Bandurski R. S.. Partial purification and characterization of indol-3-yl-acetylglucose-myo-inositol indol-3-yl-acetyltransferase (indoleacetic acid-inositol synthase).  Plant Physiology. (1990);  94 1598-1604
  • 33 Kopcewicz J., Ehmann A., Bandurski R. S.. Enzymatic esterification of indole-3-acetic acid to myo-inositol and glucose.  Plant Physiology. (1974);  54 846-851
  • 34 Kowalczyk M., Sandberg G.. Quantitative analysis of indole-3-acetic acid metabolites of Arabidopsis.  Plant Physiology. (2001);  127 1845-1853
  • 35 Kowalczyk S., Jakubowska A., Zielinska E., Bandurski R. S.. Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl-myo-inositol in immature endosperm of Zea mays. .  Physiologia Plantarum. (2003);  119 165-174
  • 36 LeClere S., Tellez R., Rampey R. A., Matsuda S. P. T., Bartel B.. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis.  Journal of Biological Chemistry. (2002);  277 20446-20452
  • 37 Leznicki A. J., Bandurski R. S.. Enzymic synthesis of indole-3-acetyl-1-0-β‐D-glucose. II. Metabolic characteristics of the enzyme.  Plant Physiology. (1988);  88 1481-1485
  • 38 Ljung K., Hull A. K., Kowalczyk M., Marchant A., Celenza J., Cohen J. D., Sandberg G.. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana.  Plant Molecular Biology. (2002);  49 249-272 Plant Molecular Biology. (2002);  50 309-332
  • 39 Ludwig-Müller J.. Indole-3-butyric acid in plant growth and development.  Plant Growth Regulation. (2000);  32 219-230
  • 40 Ludwig-Müller J., Epstein E., Hilgenberg W.. Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease.  Physiologia Plantarum. (1996);  97 627-634
  • 41 Michalczuk L., Bandurski R. S.. Enzymic synthesis of 1-O-indol-3-ylacetyl-β‐D-glucose and indol-3-ylacetyl-myo-inositol.  Biochemical Journal. (1982);  207 273-281
  • 42 Nakazawa M., Yabe N., Ichikawa T., Yamamoto Y. Y., Yoshizumi T., Hasunuma K., Matsui M.. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length.  The Plant Journal. (2001);  25 213-221
  • 43 Östin A., Moritz T., Sandberg G.. Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid.  Biological Mass Spectrometry. (1992);  21 292-298
  • 44 Schuller A., Ludwig-Müller J.. Isolation of differentially expressed genes involved in clubroot disease.  Plant Protection Science. (2002);  38 483-486
  • 45 Slovin J. P., Bandurski R. S., Cohen J. D.. Auxin. Hooykaas P. J. J., Hall, M. A., and Libbenga K. R., eds. Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, The Netherlands; Elsevier (1999): 115-140
  • 46 Sonner J. M., Purves W. K.. Natural occurrence of indole-3-acetyl aspartate and indole-3-acetyl glutamate in cucumber shoot tissue.  Plant Physiology. (1985);  77 784-785
  • 47 Staswick P. E., Tiryaki I., Rowe M. L.. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic and indole-3-acetic acids in an assay for adenylation.  Plant Cell. (2002);  14 1405-1415
  • 48 Staswick P. E., Serban B., Rowe M., Tiryaki I., Maldonado M. T., Maldonado M. C., Suza W.. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid.  Plant Cell. (2005);  17 616-627
  • 49 Szerszen J. D., Szczyglowski K., Bandurski R. S.. iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid.  Science. (1994);  265 1699-1701
  • 50 Takase T., Nakazawa M., Ishikawa A., Manabe K., Matsui M.. DFL2, a new member of the Arabidopsis GH3 gene family, is Involved in red light-specific hypocotyl elongation.  Plant Cell Physiology. (2003);  44 1071-1080
  • 51 Takase T., Nakazawa M., Ishikawa A., Kawashima M., Ichikawa T., Takahashi N., Shimada H., Manabe K., Matsui M.. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyls and root elongation.  The Plant Journal. (2004);  37 471-483
  • 52 Tam Y. Y., Epstein E., Normanly J.. Characterisation of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate and indole-3-acetyl-glucose.  Plant Physiology. (2000);  123 589-595
  • 53 Tsurumi S., Wada S.. Identification of 3-hydroxy-2-indolone-3-acetylaspartic acid as a new indole-3-acetic acid metabolite in Vicia seedlings.  Plant Cell Physiology. (1986);  27 562-599
  • 54 Walz A., Park S., Slovin J. P., Ludwig-Müller J., Momonoki Y. S., Cohen J. D.. A gene encoding a protein modified by the phytohormone indoleacetic acid.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 1718-1723

J. Ludwig-Müller

Institut für Botanik
Technische Universität Dresden

Zellescher Weg 22

01062 Dresden

Germany

Email: jutta.ludwig-mueller@mailbox.tu-dresden.de

Guest Editor: R. Reski

    >