References
<A NAME="RD24805ST-1">1</A>
Hamada M.
Takeuchi T.
Kondo S.
Ikeda Y.
Naganawa H.
Maeda K.
Okami Y.
Umezawa H.
J. Antibiot.
1970,
23:
170
<A NAME="RD24805ST-2A">2a</A>
Harada S, and
Ono H. inventors; Eur. Pat. Appl.; EP206068.
<A NAME="RD24805ST-2B">2b</A>
Katayama N.
Nozaki Y.
Tsubotani S.
Kondo M.
Harada S.
Ono H.
J. Antibiot.
1992,
45:
10
<A NAME="RD24805ST-2C">2c</A>
Hida T.
Tsubotani S.
Funabashi Y.
Ono H.
Harada S.
Bull. Chem. Soc. Jpn.
1993,
66:
863
For some recent examples see:
<A NAME="RD24805ST-3A">3a</A>
Raju B.
Mortell K.
Anandan S.
O’Dowd H.
Gao H.
Gomez M.
Hackbarth C.
Wu C.
Wang W.
Yuan Z.
White R.
Trias J.
Patel DV.
Bioorg. Med. Chem. Lett.
2003,
13:
2413
<A NAME="RD24805ST-3B">3b</A>
Jain RP.
Williams RM.
J. Org. Chem.
2002,
67:
6361
<A NAME="RD24805ST-3C">3c</A>
Davies SG.
Ichihara O.
Tetrahedron: Asymmetry
1996,
7:
1919
<A NAME="RD24805ST-4">4</A>
Hashiguchi S.
Kawada A.
Natsugari H.
Synthesis
1992,
403
Highly efficient asymmetric total syntheses of sperabillin B (3b) and D (3d) have been reported recently, see:
<A NAME="RD24805ST-5A">5a</A>
Davies SG.
Kelly RJ.
Price Mortimer AJ.
Chem. Commun.
2003,
2132
<A NAME="RD24805ST-5B">5b</A>
Davies SG.
Haggitt JR.
Ichihara O.
Kelly RJ.
Leech MA.
Price Mortimer AJ.
Roberts PM.
Smith AD.
Org. Biomol. Chem.
2004,
2:
2630
<A NAME="RD24805ST-5C">5c</A> For a previous chiral-pool synthesis of sperabillin D (3d) see:
Hashiguchi S.
Kawada A.
Natsugari H.
J. Chem. Soc., Perkin Trans. 1
1991,
2435
<A NAME="RD24805ST-6">6</A>
Chen HG.
Tustin JM.
Wuts PGM.
Sawyer TK.
Smith CW.
Int. J. Pept. Protein Res.
1995,
45:
1
<A NAME="RD24805ST-7">7</A>
Jackson RFW.
Dexter CS.
J. Org. Chem.
1999,
64:
7579
<A NAME="RD24805ST-8A">8a</A>
Ohtake N.
Okamoto O.
Mitomo R.
Kato Y.
Yamamoto K.
Haga Y.
Fukatsu H.
Nakagawa S.
J. Antibiot.
1997,
50:
598
<A NAME="RD24805ST-8B">8b</A>
Rudolph J.
Hanning F.
Theis H.
Wischnat R.
Org. Lett.
2001,
3:
3153
<A NAME="RD24805ST-8C">8c</A>
Paintner FF.
Allmendinger L.
Bauschke G.
Klemann P.
Org. Lett.
2005,
7:
1423
<A NAME="RD24805ST-9">9</A>
Evans DA.
Seidel D.
Rueping M.
Lam HW.
Shaw JT.
Downey CW.
J. Am. Chem. Soc.
2003,
125:
12692
<A NAME="RD24805ST-10">10</A>
The reaction of chiral aldehyde 6 with nitromethane in the presence of catalyst (+)-11 represents the matched case of double diastereoselection, since application of the
enantiomeric catalyst (-)-11 gave the corresponding epimer of 5 with slightly lower stereoselectivity (91% de).
For recent examples see:
<A NAME="RD24805ST-11A">11a</A>
Emmer G.
Grassberger MA.
Meingassner JG.
Schulz G.
Schaude M.
J. Med. Chem.
1994,
37:
1908
<A NAME="RD24805ST-11B">11b</A>
Matsuura F.
Hamada Y.
Shioiri T.
Tetrahedron
1994,
50:
9457
<A NAME="RD24805ST-11C">11c</A>
Georgiadis D.
Matziari M.
Vassiliou S.
Dive V.
Yiotakis A.
Tetrahedron
1999,
55:
14635
<A NAME="RD24805ST-11D">11d</A>
Walker JR.
Curley RW.
Tetrahedron
2001,
57:
6695
<A NAME="RD24805ST-11E">11e</A>
Moutevelis-Minakakis P.
Sinanoglou C.
Loukas V.
Kokotos G.
Synthesis
2005,
933
<A NAME="RD24805ST-11F">11f</A> For a recent review covering the oxidative degradation of benzene rings see:
Mander LN.
Williams CM.
Tetrahedron
2003,
59:
1105
<A NAME="RD24805ST-12A">12a</A>
Yoshifuji S.
Tanaka K.
Nitta Y.
Chem. Pharm. Bull.
1985,
33:
1749
<A NAME="RD24805ST-12B">12b</A>
Tanaka K.
Yoshifuji S.
Nitta Y.
Chem. Pharm. Bull.
1988,
36:
3125
<A NAME="RD24805ST-13A">13a</A>
In addition to product 10, its N-formyl derivative 3-tert-butoxycarbonylformylamino-5-tert-butyldimethylsilyloxy-6-nitrohexanoic acid (5% yield) and trace amounts (<1%) of
4-tert-butoxycarbonylamino-2-tert-butyldimethyl-silyloxyhexanedioic acid, the latter indicating a Nef-type reaction
at the nitromethyl group, were obtained. Application of the reaction conditions [2.2
mol% RuCl, NaIO4 (18 equiv), CCl4-MeCN-H2O = 2:2:3, r.t.] previously developed by Sharpless and co-workers (see ref. 13b) gave
the oxidation product 10 in a 41% yield together with 24% of the N-formyl derivative mentioned above.
<A NAME="RD24805ST-13B">13b</A>
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
<A NAME="RD24805ST-14">14</A>
In the absence of sodium hydrogen carbonate a somewhat lower yield (56%) of product
10 was obtained.
<A NAME="RD24805ST-15">15</A>
Spectroscopic data of compound 4: [α]D
20 +20.8 (c 0.95 in CH2Cl2). 1H NMR (500 MHz, MeOH-d
4): δ = 0.13 (3 H, s), 0.15 (3 H, s), 0.92 (9 H, s), 1.43 (9 H, sbr), 1.78 (2 H, m), 2.31 (1 H, dd, J = 14.9, 7.7 Hz), 2.39 (1 H, dd, J = 14.9, 4.7 Hz), 3.01 (1 H, dd, J = 13.0, 4.1 Hz), 3.06 (1 H, dd, J = 13.0, 4.9 Hz), 3.85 (1 H, m), 4.18 (1 H, m), 4.09 (1 H, m). 13C NMR (100 MHz, MeOH-d
4): δ = -5.0, 18.4, 25.9, 28.3, 40.0, 43.5, 45.2, 45.8, 67.7, 79.6, 157.1, 178.6.
<A NAME="RD24805ST-16">16</A>
Rossi R.
Carpita A.
Quirici MG.
Gaudenti ML.
Tetrahedron
1982,
38:
631
<A NAME="RD24805ST-17">17</A>
For an alternative stereoselective approach to (2E,4Z)-hexa-2,4-dienoic acid (14), see ref. 5b.
<A NAME="RD24805ST-18">18</A>
Smith AB.
Pitram SM.
Boldi AM.
Gaunt MJ.
Sfouggatakis C.
Moser WH.
J. Am. Chem. Soc.
2003,
125:
14435
<A NAME="RD24805ST-19A">19a</A>
Barker PL.
Gendler PL.
Rapoport H.
J. Org. Chem.
1981,
46:
2455
<A NAME="RD24805ST-19B">19b</A>
Josse O.
Labar D.
Marchand-Brynaert J.
Synthesis
1999,
404
<A NAME="RD24805ST-20">20</A> For a previous synthesis of 3-aminopropionamidine, starting from 3-aminopropionitril,
see:
Hilgetag G.
Paul H.
Günther J.
Witt M.
Chem. Ber.
1964,
97:
704
<A NAME="RD24805ST-21">21</A>
Lee HK.
Ten LN.
Pak CS.
Bull. Korean Chem. Soc.
1998,
19:
1148
<A NAME="RD24805ST-22">22</A>
Spectroscopic data of sperabillin A (3a)
[2c]
: [α]D
23 -11.4 (c 0.4 in H2O), lit.
[2c]
[α]D
23 -11 (c 1.1 in H2O). 1H NMR (500 MHz, D2O): δ = 1.77 (1 H, ddd, J = 4.5, 10.0, 15.0 Hz), 1.87 (3 H, d, J = 7.2 Hz), 1.87 (1 H, m), 2.68 (2 H, t, J = 6.6 Hz), 2.74 (2 H, m), 3.33 (1 H, dd, J = 6.6, 14.0 Hz), 3.39 (1 H, dd, J = 4.5, 14.0 Hz), 3.55 (1 H, dt, J = 6.6, 14.0 Hz), 3.59 (1 H, dt, J = 6.7, 14.0 Hz), 3.86 (1 H, m), 4.00 (1 H, m), 6.02 (1 H, dq, J = 7.2, 10.8 Hz), 6.07 (1 H, d, J = 15.1 Hz), 6.23 (1 H, t, J = 10.8 Hz), 7.56 (1 H, dd, J = 11.8, 15.1 Hz). 13C NMR (100 MHz, D2O): δ = 16.0, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 125.1, 129.6, 139.4, 139.5,
171.7, 172.4, 174.7.
<A NAME="RD24805ST-23">23</A>
Spectroscopic data of sperabillin C (3c)
[2c]
: [α]D
23 -10.2 (c 0.4 in H2O), lit.
[2c]
[α]D
20 -11 (c 0.7 in H2O). 1H NMR (500 MHz, D2O): δ = 1.75 (1 H, ddd, J = 4.7, 10.0, 15.0 Hz), 1.83 (3 H, d, J = 5.5 Hz), 1.87 (1 H, ddd, J = 3.1, 7.5, 15.0 Hz), 2.67 (2 H, t, J = 6.7 Hz), 2.73 (2 H, d, J = 7.0 Hz), 3.30 (1 H, dd, J = 6.5, 14.0 Hz), 3.37 (1 H, dd, J = 4.7, 14.0 Hz), 3.57 (2 H, m), 3.85 (1 H, m), 3.98 (1 H, m), 5.97 (1 H, d, J = 15.5 Hz), 6.26 (2 H, m), 7.13 (1 H, dd, J = 9.7, 15.5 Hz). 13C NMR (100 MHz, D2O): δ = 20.7, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 122.9, 132.0, 143.2, 145.4,
171.6, 172.5, 174.7.