Aktuelle Neurologie 2006; 33(8): 458-466
DOI: 10.1055/s-2005-915439
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

MRT- und CT-Diagnostik bei Epilepsiepatienten mit chronischem Verlauf

MRT- und CT-Diagnosis in Patients with Chronic EpilepsyA.  Doerfler1 , T.  Hammen1 , 2 , M.  Doelken1 , A.  Hufnagel3 , H.  Stefan2
  • 1Abteilung für Neuroradiologie, Universitätsklinikum Erlangen
  • 2Epilepsiezentrum (ZEE), Neurologische Klinik mit Poliklinik, Universitätsklinikum Erlangen
  • 3Klinik und Poliklinik für Neurologie, Universitätsklinik Essen
Further Information

Publication History

Publication Date:
17 February 2006 (online)

Zusammenfassung

Die diagnostische Abklärung von Patienten mit chronischen Epilepsien, die in ca. 30 % der Fälle als kryptogen eingestuft werden, stellt besondere Anforderungen an die bildgebende Diagnostik. Nur durch eine hochauflösende Bildgebung der Magnetresonanztomographie (MRT) kann hier die symptomatische Ursache von Epilepsien dargelegt und hierdurch einer adäquaten Therapie zugeführt werden. Der folgende Artikel gibt einen Überblick über ein für diese Patientengruppe optimiertes MRT-Untersuchungsprotokoll. Zusätzlich wird auf die Indikationen der Bildgebung in der Abklärung von Epilepsien eingegangen. Zahlreiche Abbildungen veranschaulichen die häufigsten Befunde bei chronischen Epilepsien. Hierbei werden neben Heterotopien, Hippokampussklerosen und tumorösen Raumforderungen auch auf seltene Krankheitsbilder wie kortikale Dysgenisien, Lissenzephalien, Schizenzephalien und Polymikrogyrien eingegangen. Abschließend werden die Möglichkeiten der funktionellen MR-Bildgebung in der Epilepsiediagnostik dargestellt.

Abstract

Diagnosis in patients with chronic epilepsy, of which 30 % still remain cryptogenic, is still a challenge. In this patient group imaging modalities play an important role for sufficient diagnosis. In most cases only high resolution imaging of the CNS is able to determine the symptomatic lesions, which is the basis for rational therapy strategies. The following article presents an overview of optimised standard examination protocols in Magnetic Resonance Imaging (MRI) and their indications in the diagnosis of epilepsies. Numerous images illustrate current findings in the mentioned patient group. In addition to heterotopias, hippocampal sclerosis and intracranial neoplasm, infrequent diseases like cortical dysgenesis, lissencephalies, schizencephalies and polymicrogyria are presented. Applications of functional MRI in the diagnosis of epilepsies are illustrated in the end.

Literatur

  • 1 Luders H O. Clinical evidence for secondary epileptogenesis.  Int Rev Neurobiol. 2001;  45 469-480
  • 2 Luhdorf K, Jensen L K, Plesner A M. Etiology of seizures in the elderly.  Epilepsia. 1986;  27 458-463
  • 3 Schold C, Yarnell P R, Earnest M P. Origin of seizures in elderly patients.  JAMA. 1977;  238 1177-1178
  • 4 Ettinger A B, Shinnar S. New-onset seizures in an elderly hospitalized population.  Neurology. 1993;  43 489-492
  • 5 Hauser W A. Epidemiology of seizures and epilepsy in the elderly. In: Rowan AJRR (ed) Seizures and Epilepsy in the Elderly. Boston, Mass; Butterworth-Heinemann 1997: 7-18
  • 6 Loiseau J, Loiseau P, Duche B. et al . A survey of epileptic disorders in southwest France: seizures in elderly patients.  Ann Neurol. 1990;  27 232-237
  • 7 Drayer B P. Imaging of the aging brain. Part I. Normal findings.  Radiology. 1988;  166 785-796
  • 8 Commission on Neuroimaging of the International League Against Epilepsy . Recommendations for neuroimaging of patients with epilepsy.  Epilepsia. 1997;  38 1255-1256
  • 9 Wright N B. Imaging in epilepsy: a paediatric perspective.  Br J Radiol. 2001;  74 575-589
  • 10 Woermann F G, Brandt C. S-vSR. Clinical Neuroimaging in Epilepsy.  Aktuelle Neurologie. 2004;  31 60-72
  • 11 Urbach H B, Becker A, Solimosy L. Störung der kortikalen Entwicklung, Bildgebung und Klassifizierung.  Klinische Neuroradiologie. 2003;  13 163-172
  • 12 Taylor D C, Falconer M A, Bruton C J, Corsellis J A. Focal dysplasia of the cerebral cortex in epilepsy.  J Neurol Neurosurg Psychiatry. 1971;  34 369-387
  • 13 Becker A J, Urbach H, Scheffler B. et al . Focal cortical dysplasia of Taylor's balloon cell type: mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis.  Ann Neurol. 2002;  52 29-37
  • 14 Lawson J A, Birchansky S, Pacheco E. et al . Distinct clinicopathologic subtypes of cortical dysplasia of Taylor.  Neurology. 2005;  64 55-61
  • 15 Bernasconi A, Antel S B, Collins D L. et al . Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy.  Ann Neurol. 2001;  49 770-775
  • 16 Wallace R C, Bourekas E C. Brain arteriovenous malformations.  Neuroimaging Clin N Am. 1998;  8 383-399
  • 17 Bradley W G, Shey R B. MR imaging evaluation of seizures.  Radiology. 2000;  214 651-656
  • 18 Cendes F, Andermann F, Gloor P. et al . MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy.  Neurology. 1993;  43 719-725
  • 19 Watson C, Cendes F, Fuerst D. et al . Specificity of volumetric magnetic resonance imaging in detecting hippocampal sclerosis.  Arch Neurol. 1997;  54 67-73
  • 20 Warach S, Li W, Ronthal M, Edelman R R. Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography.  Radiology. 1992;  182 41-47
  • 21 Fisher M, Prichard J W, Warach S. New magnetic resonance techniques for acute ischemic stroke.  JAMA. 1995;  274 908-911
  • 22 Rosen B R, Belliveau J W, Chien D. Perfusion imaging by nuclear magnetic resonance.  Magn Reson Q. 1989;  5 263-281
  • 23 Diehl B, Najm I, Ruggieri P. et al . Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy.  Epilepsia. 2001;  42 21-28
  • 24 Helpern J A, Huang N. Diffusion-weighted imaging in epilepsy.  Magn Reson Imaging. 1995;  13 1227-1231
  • 25 Hugg J W, Butterworth E J, Kuzniecky R I. Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations.  Neurology. 1999;  53 173-176
  • 26 Kim J A, Chung J I, Yoon P H. et al . Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.  AJNR Am J Neuroradiol. 2001;  22 1149-1160
  • 27 Lansberg M G, O'Brien M W, Norbash A M. et al . MRI abnormalities associated with partial status epilepticus.  Neurology. 1999;  52 1021-1027
  • 28 Patel M R, Blum A, Pearlman J D. et al . Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring.  AJNR Am J Neuroradiol. 1999;  20 1916-1919
  • 29 Wieshmann U C, Clark C A, Symms M R. et al . Water diffusion in the human hippocampus in epilepsy.  Magn Reson Imaging. 1999;  17 29-36
  • 30 Hufnagel A, Weber J, Marks S. et al . Brain diffusion after single seizures.  Epilepsia. 2003;  44 54-63
  • 31 Leonhardt G, Greiff A de, Marks S. et al . Brain diffusion during hyperventilation: diffusion-weighted MR-monitoring in patients with temporal lobe epilepsy and in healthy volunteers.  Epilepsy Res. 2002;  51 269-278
  • 32 Konermann S, Marks S, Ludwig T. et al . Presurgical evaluation of epilepsy by brain diffusion: MR-detected effects of flumazenil on the epileptogenic focus.  Epilepsia. 2003;  44 399-407
  • 33 Lazeyras F, Blanke O, Perrig S. et al . EEG-triggered functional MRI in patients with pharmacoresistant epilepsy.  J Magn Reson Imaging. 2000;  12 1777-1785
  • 34 Lemieux L, Krakow K, Fish D R. Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization.  Neuroimage. 2001;  14 1097-1104
  • 35 Archer J S, Briellman R S, Abbott D F. et al . Benign epilepsy with centro-temporal spikes: spike triggered fMRI shows somato-sensory cortex activity.  Epilepsia. 2003;  44 200-204
  • 36 Krakow K, Messina D, Lemieux L. et al . Functional MRI activation of individual interictal epileptiform spikes.  Neuroimage. 2001;  13 502-505
  • 37 Zentner J, Hufnagel A, Wolf H K. et al . Surgical treatment of neoplasms associated with medically intractable epilepsy.  Neurosurgery. 1997;  41 378-387
  • 38 Fernandez G, Greiff A de, Oertzen J von. et al . Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation.  Neuroimage. 2001;  14 585-594
  • 39 Jayakar P, Bernal B, Santiago Medina L. et al . False lateralization of language cortex on functional MRI after a cluster of focal seizures.  Neurology. 2002;  58 490-492
  • 40 Golby A J, Poldrack R A, Illes J. et al . Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI.  Epilepsia. 2002;  43 855-863
  • 41 Stefan H, Pauli E, Eberhardt K E. et al . MRI spectroscopy, T2 relaxometry and postoperative prognosis in cryptogenic temporal lobe epilepsy.  Nervenarzt. 2000;  71 282-287
  • 42 Hammen T, Stefan H, Pauli E. et al . 1H-MR spectroscopy: a promising method in distinguishing subgroups in temporal lobe epilepsy?.  J Neurol Sci. 2003;  215 21-25
  • 43 Kuzniecky R, Palmer C, Hugg J. et al . Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss?.  Arch Neurol. 2001;  58 2048-2053
  • 44 Woermann F G, McLean M A, Bartlett P A. et al . Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis.  Ann Neurol. 1999;  45 369-376
  • 45 Lundbom N, Gaily E, Vuori K. et al . Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy.  Epilepsia. 2001;  42 1507-1514

Prof. Dr. Stefan Hermann

Epilepsiezentrum Erlangen (ZEE) · Neurologische Klinik und Poliklinik · Universitätsklinikum Erlangen

Schwabachanlage 6

91054 Erlangen

Email: hermann.Stefan@neuro.imed.uni-erlangen.de

    >