Plant Biol (Stuttg) 2006; 8(4): 439-449
DOI: 10.1055/s-2005-873053
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Isolation and Characterization of Root-Specific Phosphate Transporter Promoters from Medicago truncatula

K. Xiao1 , 4 , J. Liu3 , G. Dewbre2 , M. Harrison3 , Z.-Y. Wang1
  • 1Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
  • 2Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
  • 3Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
  • 4Present address: College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071001, China
Further Information

Publication History

Received: July 26, 2005

Accepted: November 18, 2005

Publication Date:
13 March 2006 (online)

Abstract

Promoters of phosphate transporter genes MtPT1 and MtPT2 of Medicago truncatula were isolated by utilizing the gene-space sequence information and by screening of a genomic library, respectively. Two reporter genes, β-glucuronidase (GUS) and green fluorescent protein (GFP) were placed under the control of the MtPT1 and MtPT2 promoters. These chimeric transgenes were introduced into Arabidopsis thaliana and transgenic roots of M. truncatula, and expression patterns of the reporter genes were assayed in plants grown under different phosphate (Pi) concentrations. The expression of GUS and GFP was only observed in root tissues, and the levels of expression decreased with increasing concentrations of Pi. GUS activities in roots of transgenic plants decreased 10-fold when the plants were transferred from 10 µM to 2 mM Pi conditions, however, when the plants were transferred back to 10 µM Pi conditions, GUS expression reversed back to the original level. The two promoters lead to different expression patterns inside root tissues. The MtPT1 promoter leads to preferential expression in root epidermal and cortex cells, while MtPT2 promoter results in strong expression in the vascular cylinder in the center of roots. Promoter deletion analyses revealed possible sequences involved in root specificity and Pi responsiveness. The promoters are valuable tools for defined engineering of plants, particularly for root-specific expression of transgenes.

References

  • 1 Boisson-Dernier A., Chabaud M., Garcia F., Becard G., Rosenberg C., Barker D. G.. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations.  Molecular Plant Microbe Interactions. (2001);  14 695-700
  • 2 Chen H., Nelson R. S., Sherwood J. L.. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection.  Biotechniques. (1994);  16 664-670
  • 3 Chiou T. J., Liu H., Harrison M. J.. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface.  The Plant Journal. (2001);  25 281-293
  • 4 Clough S. J., Bent A. F.. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.  The Plant Journal. (1998);  16 735-743
  • 5 Daram P., Brunner S., Persson B. L., Amrhein N., Bucher M.. Functional analysis and cell-specific expression of a phosphate transporter from tomato.  Planta. (1998);  206 225-233
  • 6 Degenhardt J., Tobin E. M.. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants.  Plant Cell. (1996);  8 31-41
  • 7 Dunn M. A., White A. J., Vural S., Hughes M. A.. Identification of promoter elements in a low-temperature-responsive gene (blt 4.9) from barley (Hordeum vulgare L.).  Plant Molecular Biology. (1998);  38 551-564
  • 8 Hammond J. P., Bennett M. J., Bowen H. C., Broadley M. R., Eastwood D. C., May S. T., Rahn C., Swarup R., Woolaway K. E., White P. J.. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants.  Plant Physiology. (2003);  132 578-596
  • 9 Higo K., Ugawa Y., Iwamoto M., Korenaga T.. Plant cis-acting regulatory DNA elements (PLACE) database.  Nucleic Acids Research. (1999);  27 297-300
  • 10 Jefferson R. A., Kavanagh T. A., Bevan M. W.. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.  EMBO Journal. (1987);  6 3901-3907
  • 11 Karthikeyan A. S., Varadarajan D. K., Mukatira U. T., D'Urzo M. P., Damsz B., Raghothama K. G.. Regulated expression of Arabidopsis phosphate transporters.  Plant Physiology. (2002);  130 221-233
  • 12 Leggewie G., Willmitzer L., Riesmeier J. W.. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants.  Plant Cell. (1997);  9 381-392
  • 13 Liu H., Trieu A. T., Blaylock L. A., Harrison M. J.. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi.  Molecular Plant Microbe Interactions. (1998);  11 14-22
  • 14 Luscher B., Eisenman R. N.. New light on Myc and Myb. Part II: Myb.  Genes and Development. (1990);  4 2235-2241
  • 15 Marschner H.. Mineral Nutrition of Higher Plants. 2nd ed. San Diego; Academic Press (1995)
  • 16 Mendel R. R., Mueller B., Schulze J., Kolesnikov V., Zelenin A.. Delivery of foreign genes to intact barley cells by high-velocity microprojectiles.  Theoretical and Applied Genetics. (1989);  78 31-34
  • 17 Misson J., Thibaud M. C., Bechtold N., Raghothama K., Nussaume L.. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants.  Plant Molecular Biology. (2004);  55 727-741
  • 18 Moll S., Anke S., Kahmann U., Hansch R., Hartmann T., Ober D.. Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase.  Plant Physiology. (2002);  130 47-57
  • 19 Muchhal U. S., Pardo J. M., Raghothama K. G.. Phosphate transporters from the higher plant Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 10519-10523
  • 20 Mudge S. R., Rae A. L., Diatloff E., Smith F. W.. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. .  The Plant Journal. (2002);  31 341-353
  • 21 Mukatira U. T., Liu C., Varadarajan D. K., Raghothama K. G.. Negative regulation of phosphate starvation-induced genes.  Plant Physiology. (2001);  127 1854-1862
  • 22 Paszkowski U., Kroken S., Roux C., Briggs S. P.. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 13324-13329
  • 23 Potenza C., Aleman L., Sengupta-Gopalan C.. Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation.  In Vitro Cellular and Developmental Biology Plant. (2004);  40 1-22
  • 24 Quandt H. J., Pühler A., Broer I.. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules.  Molecular Plant-Microbe Interactions. (1993);  6 699-706
  • 25 Raghothama K. G.. Phosphate acquisition.  Annual Review of Plant Physiology and Plant Molecular Biology. (1999);  50 665-693
  • 26 Raghothama K. G.. Phosphate transport and signaling.  Current Opinion in Plant Biology. (2000);  3 182-187
  • 27 Roe B. A., Kupfer D. M.. Sequencing gene rich regions of Medicago truncatula, a model legume. Hopkins, A., Wang, Z. Y., Mian, R., Sledge, M., and Barker, R. E., eds. Molecular Breeding of Forage and Turf. Dordrecht; Kluwer Academic Publishers (2004): 333-344
  • 28 Rubio V., Linhares F., Solano R., Martin A. C., Iglesias J., Leyva A., PazAres J.. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae.  Genes and Development. (2001);  15 2122-2133
  • 29 Schachtman D. P., Reid R. J., Ayling S. M.. Phosphorus uptake by plants: from soil to cell.  Plant Physiology. (1998);  116 447-453
  • 30 Schunmann P. H. D., Richardson A. E., Smith F. W., Delhaize E.. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.).  Journal of Experimental Botany. (2004 a);  55 855-865
  • 31 Schunmann P. H. D., Richardson A. E., Vickers C. E., Delhaize E.. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation.  Plant Physiology. (2004 b);  136 4205-4214
  • 32 Sessa G., Borello U., Morelli G., Ruberti I.. A transient assay for rapid functional analysis of transcription factors in Arabidopsis.  Plant Molecular Biology Reporter. (1998);  16 191-197
  • 33 Shin H. S., Dewbre G. R., Harrison M. J.. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.  The Plant Journal. (2004);  39 629-642
  • 34 Thum K. E., Kim M., Morishige D. T., Eibl C., Koop H. U., Mullet J. E.. Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco.  Plant Molecular Biology. (2001);  47 353-366
  • 35 Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K.. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence.  Plant Cell. (1993);  5 1529-1539
  • 36 Vance C. P., Uhde S. C., Allan D. L.. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.  New Phytologist. (2003);  157 423-447
  • 37 Von Uexküll H. R., Mutert E.. Global extent, development and economic impact of acid soils.  Plant and Soil. (1995);  171 1-15
  • 38 Whitelaw M. A.. Growth promotion of plants inoculated with phosphate-solubilizing fungi.  Advances in Agronomy. (2000);  69 99-151
  • 39 Xiao K., Harrison M., Wang Z.-Y.. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis.  Planta. (2005 a);  222 27-36
  • 40 Xiao K., Katagi H., Harrison M., Wang Z.-Y.. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula.  Plant Science. (2006);  170 191-202
  • 41 Xiao K., Zhang C., Harrison M., Wang Z.-Y.. Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants.  Molecular Breeding. (2005 b);  15 221-231

Z.-Y. Wang

Forage Improvement Division
The Samuel Roberts Noble Foundation

2510 Sam Noble Parkway

Ardmore, OK 73401

USA

Email: zywang@noble.org

Editor: M. Hawkesford

    >