Plant Biol (Stuttg) 2006; 8(2): 234-242
DOI: 10.1055/s-2005-873046
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Genetic Diversity and Population Structure of Elytrigia pycnantha (Godr.) (Triticeae) in Mont Saint-Michel Bay Using Microsatellite Markers

A. Refoufi1 , M.-A. Esnault1
  • 1Université de Rennes 1, UMR 6553 Ecobio, Campus de Beaulieu, 35042 Rennes cedex, France
Further Information

Publication History

Received: June 14, 2005

Accepted: October 13, 2005

Publication Date:
17 March 2006 (online)

Abstract

During the last decade, an invasive wheatgrass species (Elytrigia pycnantha) has colonized the low salt marshes of the Mont Saint Michel Bay resulting in an accelerated change in the vegetation. This study was conducted using microgeographical genetic diversity in order to understand the genetic structure of this invasive and clonal species. Genetic variation and population structure of fifteen populations collected in high and low marsh habitats around the Bay were analyzed using five microsatellite loci. Because E. pycnantha is an allohexaploid, the application of standard genetic diversity statistics was not possible, we chose to summarize genetic diversity using statistics calculated from banding phenotypes. The mean number of alleles per locus was 10.2, the mean number of different alleles per sample was 6.87. The mean number of allelic phenotypes across all populations was 7.21. The mean value of genetic diversity for the species, calculated as the average number of alleles by which pairs of individuals differ, was H′s = 1.91 and H′t = 2.04. Little genetic differentiation among populations was detected (0.067). The association between pairwise genetic differentiation and geographic distances exhibited no evidence for isolation by distance. A geographical pattern of population differentiation, where a single population GI was clearly separated from the remaining population groups (considered as a metapopulation), was revealed by principal component analysis (PCA), and we propose that this is because GI represents a new genotype.

References

  • 1 Aïnouche M., Bayer R.. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA.  Genome. (1997);  40 730-743
  • 2 Baumel A., Ainouche M., Levasseur J. E.. Molecular investigations in populations of Spartina anglica C. E. Hubbard (Poaceae) invading coastal Brittany (France).  Molecular Ecology. (2001);  10 1689-1701
  • 3 Bockelmann A. C.. Ordinary and successful - the invasion of Elymus athericus in European marshes. PhD Thesis, University of Groningen, Groningen. (2002)
  • 4 Bockelmann A. C., Bakker J. P., Neuhaus R., Lage J.. The relation between vegetation zonation, elevation and inundation frequency in a salt marsh.  Aquatic Botany. (2002);  73 211-221
  • 5 Bockelmann A. C., Reusch B. H., Bijlsma R., Bakker J. P.. Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European marshes.  Molecular Ecology. (2003);  12 505-515
  • 6 Bouchard V., Digaire F., Lefeuvre J. C., Guillon L. M.. Progression des marais salés à l'ouest du Mont-Saint-Michel entre 1984 et 1994.  Mappemonde. (1995);  4 28-34
  • 7 Cauderon Y.. Genome analysis in the genus Agropyron.  Hereditas. (1966);  Suppl. 2 218-234
  • 8 Cronck Q. C. B., Fuller J. L.. Plant Invaders. London, UK; Chapman and Hall (1996)
  • 9 Crouvezier V.. Les moutons des prés salés de la Baie du Mont Saint-Michel : utilisation des marais salés et techniques d'exploitation. DEA, Université Paris 1, Paris. (1996)
  • 10 Dewey D. R.. Historical and current taxonomic perspectives of Agropyron, Elymus, and related genera.  Crop Science. (1983);  23 637-642
  • 11 Dewey D. R.. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gustafson, J. P., ed. Gene Manipulation in Plant Improvement, Vol. 16. New York; Plenum Press (1984): 209-279
  • 12 Doyle J. J., Doyle J. L.. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.  Phytochemical Bulletin. (1987);  19 11-15
  • 13 Festoc G.. Etude microévolutive de populations de Puccinellia maritima (Huds.) Parl. (Poaceae) dans le cadre d'une succession primaire. Thèse de Doctorat de l'Université de Rennes 1, Rennes. (1999)
  • 14 Gehu J. M.. Etude phytocoenotique analytique et globale de l'ensemble des vases salées et prés salés et saumâtres de la façade atlantique françaises. Ministère de l'Environnement, mission des études (1979): 1-514
  • 15 Goldstein D. B., Pollock D. D.. Launching microsatellites: a review of mutation processes and methods of phylogenetic inference.  Journal of Heredity. (1997);  88 335-342
  • 16 Goldstein D.B., Roemer G. W., Smith D.A., Reich D. E., Wayne R. K.. The use of microsatellite variation to infer population structure and demographic history in a natural model system.  Genetics. (1999);  151 797-801
  • 17 Guillon L. M.. Les schorres de la baie du Mont Saint-Michel: unités de végétation et facteurs du milieu. CEE, Environnement 608F (SD), Laboratoire d'Evolution des Systèmes Naturels et Modifiés. (1984): 1-78
  • 18 Hamrick J. L., Godt M. J. W.. Allozyme diversity in plant species. Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S., eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA, USA; Sinauer Associates Inc. (1989): 43-63
  • 19 Leendertse P. C., Rozen A. J. M., Rozema J.. Long-term changes (1953 - 90) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding.  Plant Ecology. (1997);  132 49-58
  • 20 Levasseur J. E.. Carte de répartition des formations végétales des prés salés aux abords du Mont Saint-Michel. In Projet De Rétablissement Du Caractère Maritime Du Mont Saint-Michel. Etudes En Environnement. Vol. 6: Contribution à la connaissance de la dynamique des herbus. Service de Botanique, Université de Rennes 1 et Laboratoire de Géomorphologie et Environnement Littoral EPHE. (1999)
  • 21 Löve A.. Generic evolution of the wheatgrasses.  Biologisches Zentralblatt. (1982);  101 199-212
  • 22 Löve A.. Conspectus of the Triticeae.  Feddes Repertorium. (1984);  95 425-521
  • 23 Mantel N. A.. The detection of disease clustering and a generalized regression approach.  Cancer Research. (1967);  27 209-220
  • 24 Melderis A.. Taxonomic notes on the tribe Triticeae (Gramineae), with special reference to the genera Elymus L. sensu lato, and Agropyron Gaertner sensu lato.  Botanical Journal Linnean Society. (1978);  76 369-384
  • 25 Murawski D. A., Hamrick J. L.. Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae.  American Journal of Botany. (1990);  77 1201-1208
  • 26 Nei M.. Molecular Evolutionary Genetics. New York; Columbia University Press (1987)
  • 27 Obbard D. J.. Genetic diversity and sexual-system evolution in the annual mercuries. PhD Thesis, University of Oxford, Chapter 3. (2004): 63-84
  • 28 Refoufi A., Jahier J., Esnault M.-A.. Genome analysis of Elytrigia pycnantha and Thinopyrum junceiforme and their putative natural hybrid using the GISH technique.  Genome. (2001);  44 708-715
  • 29 Röder M. S., Plashke J., König S. U., Börner A., Ganal M. W.. Abundance, variability, and chromosomal location of microsatellites in wheat.  Molecular and General Genetics. (1995);  246 327-333
  • 30 Röder M. S., Korzun V., Wendehake K.. et al. . A microsatellite map of wheat.  Genetics. (1998);  149 2007-2023
  • 31 Rholf F. J.. NTSys-pc Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Setauket, New York; Exceter Publishing Ltd. (1998)
  • 32 Rousset F.. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance.  Genetics. (1997);  145 1219-1228
  • 33 Sun G.L., Salomon B., von Bothmer R.. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers.  Genome. (1997);  40 806-814
  • 34 Sun G.L., Salomon B., von Bothmer R.. Characterization and analysis of microsatellite loci in Elymus caninus (Triticeae: Poaceae).  Theoretical and Applied Genetics. (1998 a);  96 676-682
  • 35 Sun G. L., Salomon B., von Bothmer R.. Characterization of microsatellite loci from Elymus alaskanus and length polymorphism in several Elymus species (Triticeae).  Genome. (1998 b);  41 455-463
  • 36 Sun G. L., Diaz O., Salomon B., von Bothmer R.. Microsatellite variation and its comparison with allozyme and RAPD variation in Elymus fibrosus (Schrenk) Tzvel. (Poaceae).  Hereditas. (1998 c);  129 275-282
  • 37 Sun G. L., Diaz O., Salomon B., von Bothmer R.. Genetic diversity and structure in a natural Elymus caninus population from Denmark based on microsatellite and isozyme analysis.  Plant Systematics and Evolution. (2001);  227 235-244
  • 38 Valery L.. Progression d’Elytrigia aetherica dans un marais salé : incidence sur les flux de matière organique. Rapport de DEA. Muséum National d'Histoire Naturelle. (2001)
  • 39 Van Wijnen H. J., Bakker J. P., de Vries Y.. Twenty years of salt marsh succession on the coastal barrier island of Schiermonnikoog (The Netherlands).  Journal of Coastal Conservation. (1997);  3 9-18
  • 40 Weir B. S., Cockerham C. C.. Estimating F-statistics for the analysis of population structure.  Evolution. (1984);  38 1358-1370

M.-A. Esnault

Université de Rennes 1
UMR 6553 Ecobio

Campus de Beaulieu

35042 Rennes cedex

France

Email: marie-andree.esnault@univ-rennes1.fr

Editor: F. Salamini

    >