Abstract
Temperature increase and altered precipitation are facets of “Global Change”, along
with enhanced tropospheric ozone (O3) and CO2 levels. Both O3 and drought may curtail the probably limited capacity of “extra” carbon fixation
in forest trees under a CO2-enriched atmosphere. In view of the exceptionally dry year of 2003 in Central Europe,
this mini-review highlights O3/drought interactions in biochemical and ecophysiological responses of trees. Such
interactions appear to vary, depending on the genotype and factorial scenarios. If
O3 perturbs stomatal regulation, tolerance to both drought and persisting O3 exposure may be weakened, although drought preceding O3 stress may “harden” against O3 impact. Stomatal closure under drought may shield trees against O3 uptake and injury, which indeed was the case in 2003. However, the trees' “tuning”
between O3 uptake and defence capacity is crucial in stress tolerance. Defence may be constrained
due to limited carbon fixation, which results from the trade-off with O3 exclusion upon stomatal closure. Drought may cause a stronger reduction in stem growth
than does ozone on an annual basis.
Key words
Ozone - drought - forest trees - stomata - defence - interactions.
References
- 1
Alonso R., Elvira S., Castillo F. J., Gimeno B. S..
Interactive effects of ozone and drought stress on pigments and activities of antioxidative
enzymes in Pinus halepensis.
Plant, Cell and Environment,.
(2001);
24
905-916
- 2
Andersen C. P..
Source-sink balance and carbon allocation below ground in plants exposed to ozone.
New Phytologist.
(2003);
157
213-228
- 3
Ashmore M. R..
Assessing the future global impacts of ozone on vegetation.
Plant, Cell and Environment.
(2005);
28
949-964
- 4
Barnes J. D., Eamus D., Brown K. A..
The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies [L.] Karst). I. Plant-water relations.
New Phytologist.
(1990 a);
114
713-720
- 5
Barnes J. D., Eamus D., Brown K. A..
The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies [L.] Karst). II. Photosynthesis, dark respiration and soluble carbohydrates of trees
during late autumn.
New Phytologist.
(1990 b);
115
149-156
- 6
Beyers J. L., Riechers G. H., Temple P. J..
Effects of long-term ozone exposure and drought on the photosynthetic capacity of
ponderosa pine (Pinus ponderosa Laws.).
New Phytologist.
(1992);
122
81-90
- 7
Chappelka A. H., Freer-Smith P. H..
Predisposition of trees by air pollutants to low temperature and moisture stress.
Environmental Pollution.
(1995);
87
105-117
- 8 Chevone B. I., Seiler J. R., Melkonian J., Amundson R. G..
Ozone-water stress interactions. Alscher, R. and Cumming, C., eds. Stress Responses in Plants: Adaptation and Acclimation
Mechanisms. New York; Wiley-Liss Inc. (1990): 311-328
- 9
Dizengremel P..
Effects of ozone on the carbon metabolism of forest trees.
Plant Physiology and Biochemistry.
(2001);
39
729-742
- 10
Dobson M. C., Taylor G., Freer-Smith P. H..
The control of ozone uptake by Picea abies (L.) Karst. and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations.
New Phytologist.
(1990);
116
465-474
- 11
Elstner E. F., Osswald W..
Mechanisms of oxygen activation during plant stress.
Proceedings of the Royal Society of Edinburgh Section B - Biology.
(1994);
102
131-154
- 12
Emberson L. D., Ashmore M. R., Cambridge H. M., Simpson D., Tuovinen J. P..
Modelling stomatal ozone flux across Europe.
Environmental Pollution.
(2000);
109
403-413
- 13 Fabian P.. Leben im Treibhaus, unser Klimasystem - und was wir daraus machen. Berlin,
Heidelberg, New York; Springer (2002): 258
- 14 Farquhar G. D., Hubick K. T., Condon A. G., Richards R. A..
Carbon isotope fractionation and plant water-use efficiency. Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable Isotopes in Ecological
Research , Ecological Studies 68,. Berlin, Heidelberg, New York; Springer Verlag (1989):
21-40
- 15
Fontaine V., Cabané M., Dizengremel P..
Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress.
Physiologia Plantarum.
(2003);
117
445-452
- 16
Fontaine V., Pelloux J., Podor M., Afif D., Gérant D., Grieu P., Dizengremel P..
Carbon fixation in Pinus halepensis submitted to ozone. Opposite response of ribulose-1, 5-bisphosphate carboxylase/oxygenase
and phosphoenolpyruvate carboxylase.
Physiologia Plantarum.
(1999);
105
187-192
- 17
Foyer C., Noctor G..
Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative
stress in a physiological context.
Plant, Cell and Environment.
(2005);
28
1056-1071
- 18
Fowler D., Cape J. N., Coyle M., Flechard C., Kuylenstienra J., Hicks K., Derwent D.,
Johnson C., Stevenson D..
The global exposure of forests to air pollutants.
Water, Air and Soil Pollution.
(1999);
116
5-32
- 19
Gérant D., Podor M., Grieu P., Afif D., Cornu S., Morabito D., Banvoy J., Robin C.,
Dizengremel P..
Carbon metabolism enzyme activities and carbon partitioning in Pinus halepensis Mill. exposed to mild drought and ozone.
Journal of Plant Physiology.
(1996);
148
142-147
- 20 Götz B.. Ozon und Trockenstress, Wirkungen auf den Gaswechsel von Fichte. Libri
Botanici Bd. 16. Eching; IHW-Verlag (1996): 149
- 21
Grulke N. E., Preisler H. K., Rose C., Kirsch J., Balduman L..
O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural
stands.
New Phytologist.
(2002);
154
621-631
- 22
Grulke N. E., Johnson R., Monschein S., Nikolova P., Tausz M..
Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites.
Tree Physiology.
(2003 a);
23
923-929
- 23
Grulke N. E., Preisler H. K., Rose C., Kirsch J., Balduman L..
O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural
stands.
New Phytologist.
(2003 b);
154
621-631
- 24
Grulke N. E., Alonso R., Nguyen T., Cascio C., Dobrowolski W..
Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics.
Tree Physiology.
(2004);
24
1001-1010
- 25
Günthardt-Goerg M. S., Matyssek R., Scheidegger C., Keller T..
Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentration.
Trees.
(1993);
7
104-114
- 26 Heath R. L., Taylor G. E..
Physiological processes and plant responses to ozone3 exposure. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone,
A Comparison of Controlled Chamber and Field Experiments , Ecological Studies 127,. Berlin;
Springer-Verlag (1997): 317-368
- 27 IPCC .
IPCC Third Assessment Report: Climate Change 2001, Synthesis Report. Watson, R. T. and the Core Writing Team, eds. Geneva, Switzerland; IPCC (2001):
184
- 28
Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R..
Plant defence systems induced by ozone.
Plant, Cell and Environment.
(1994);
17
783-794
- 29
Karlsson P. E., Medin E. L., Wickström H., Selldén G., Wallin G., Ottoson S., Skärby L..
Ozone and drought stress: interactive effects on the growth and physiology of Norway
spruce (Picea abies [L.] Karst.).
Water, Air and Soil Pollution.
(1995);
85
1325-1330
- 30
Karlsson P. E., Medin E. L., Wallin G., Selldén G., Skärby L..
Effects of ozone and drought stress on the physiology and growth of two clones of
Norway spruce (Picea abies).
.
New Phytologist.
(1997);
136
265-275
- 31
Karlsson P. E., Pleijel H., Karlsson G. P., Medin E. L., Skärby L..
Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in
open-top chambers.
Environmental Pollution.
(2000);
109
443-451
- 32
Karlsson P., Uddling J., Braun S., Broadmeadow M., Elvira S., Gimeno B., LeTiec D.,
Oksanen E., Vandermeiren K., Wilkinson M., Emberson L.D..
New critical levels for ozone effects on young trees based on AOT40 and simulated
cumulative leaf uptake of ozone.
Atmospheric Environment.
(2004);
38
2283-2294
- 33
Karnosky D. F., Zak D., Pregnitzer K., Awmack C., Bockheim J., Dickson R., Hendrey G.,
Host G., King J., Kopper B., Kruger E., Kubiske M., Lindroth R., Mattson W., McDonald E.,
Noormets A., Oksanen E., Parsons W., Percy K., Podila G., Riemenschneider D., Sharma P.,
Thakur R., Sober A., Sober J., Jones W., Anttonen S., Vapaavuori E., Manskovska B.,
Heilman W., Isebrands J..
Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project.
Functional Ecology.
(2003);
17
289-304
- 34
Keller T., Häsler R..
Some effects of long-term ozone fumigations on Norway spruce. I. Gas exchange and
stomatal response.
Trees.
(1987);
1
129-133
- 35
Kivimäenpää M., Sutine S., Karlsson P. E., Sellden G..
Cell structural changes in the needles of Norway spruce exposed to long-term ozone
and drought.
Annals of Botany.
(2003);
92
779-793
- 36
Körner C..
Carbon limitation in trees.
Journal of Ecology.
(2003);
91
4-17
- 37
Le Thiec D., Manninen S..
Ozone and water deficit reduced growth of Aleppo pine seedlings.
Plant Physiology and Biochemistry.
(2003);
41
55-63
- 38
Kronfuß G., Polle A., Tausz M., Havranek W. M., Wieser G..
Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast
pigments in current-year needles of young Norway spruce (Picea abies [L.] Karst.).
Trees.
(1998);
12
482-489
- 39
Maier-Maercker U..
Predisposition of trees to drought stress by ozone.
Tree Physiology.
(1998);
19
71-78
- 40
Matyssek R., Günthardt-Goerg M. S., Keller T., Scheidegger C..
Impairment of gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations.
Trees.
(1991);
5
5-13
- 41
Matyssek R., Günthardt-Goerg M. S., Saurer M., Keller T..
Seasonal growth, δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations.
Trees.
(1992);
6
69-76
- 42
Matyssek R., Günthardt-Goerg M. S., Maurer S., Keller T..
Nighttime exposure to ozone reduces whole-plant production in Betula pendula.
.
Tree Physiology.
(1995);
15
159-165
- 43 Matyssek R., Sandermann H.. Impact of Ozone on Trees: An Ecophysiological Perspective.
Progress in Botany 64. Heidelberg; Springer Verlag (2003): 349-404
- 44
Matyssek R., Wieser G., Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Winkler J. B.,
Baumgarten M., Häberle K.‐H., Grams T. E. E., Werner H., Fabian P., Havranek W. M..
Comparison between AOT40 and ozone uptake in forest trees of different species, age
and site conditions.
Atmospheric Environment.
(2004);
38
2271-2281
- 45
Maurer S., Matyssek R., Günthardt-Goerg M. S., Landolt W., Einig W..
Nutrition and the ozone sensitivity of birch (Betula pendula). I. Responses at the leaf level.
Trees.
(1997);
12
1-10
- 46 Miller P. R., McBride J. M.. Oxidant air pollution impacts in the montane forest
of southern California. Ecological Studies 134. Berlin, Heidelberg, New York; Springer
(1999): 317-336
- 47
Nali C., Paletti E., Marabottini R., Della Rocca G., Lorenzini G., Paolacci A. R.,
Ciuffi M., Badiani M..
Ecophysiological and biochemical strategies of response to ozone in Mediterranean
evergreen broadleaf species.
Atmospheric Environment.
(2004);
38
2247-2267
- 48
Neals T. F., McLeod A. L..
Do leaves contribute to the abscisic acid present in the xylem of “droughted” sunflower
plants?.
Plant, Cell and Environment.
(1992);
14
979-986
- 49
Nunn A. J., Reiter I. M., Häberle K‐H., Werner H., Langebartels C., Sandermann H.,
Heerdt C., Fabian P., Matyssek R..
“Free-air” ozone canopy fumigation in an old-growth mixed forest: Concept and observations
in beech.
Phyton.
(2002);
42
105-119
- 50
Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Leuchner M., Lütz C., Liu X.,
Winkler J. B., Grams T. E. E., Häberle K.‐H., Werner H., Fabian P., Rennenberg H.,
Matyssek R..
Comparison of ozone uptake and responsiveness between a phytotron study with young
and a field experiment with adult beech (Fagus sylvatica).
.
Environmental Pollution.
(2005);
137
494-506
- 51 Nunn A. J.. Risiko-Einschätzung der chronisch erhöhten Ozonbelastung mittels „Free-Air“-Begasung
von Buchen (Fagus sylvatica) und Fichten (Picea abies) eines forstlich begründeten Mischbestandes. Doctoral Thesis, Ecophysiology of Plants/Weihenstephan,
Technische Universität München. (2005)
- 52
Panek J. A., Goldstein A. H..
Response of stomatal conductance to drought in ponderosa pine: implications for carbon
and ozone uptake.
Tree Physiology.
(2001);
21
337-344
- 53
Panek J. A..
Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed
Pinus ponderosa forests: measured trends and parameters for uptake modelling.
Tree Physiology.
(2004);
24
277-290
- 54
Panek J. A., Kurpius M. R., Goldstein A. H..
An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa
pine ecosystem.
Environmental Pollution.
(2002);
117
93-100
- 55
Pääkkönen E., Vahala J., Pohjola M., Holopainen T., Kärenlampi L..
Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress.
Plant, Cell and Environment.
(1998 a);
21
671-684
- 56
Pääkkönen E., Seppänen S., Holopainen T., Kokko H., Kärenlampi S., Kärenlampi L.,
Kangasjärvi J..
Induction of genes for the stress proteins PR‐10 and PAL in relation to growth, visible
injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought.
New Phytologist.
(1998 b);
138
295-305
- 57
Pelloux J., Jolivet Y., Fontaine V., Banvoy J., Dizengremel P..
Changes in Rubisco and Rubisco activase gene expression and polypeptide content in
Pinus halepensis Mill. subjected to ozone and drought.
Plant, Cell and Environment.
(2001);
24
123-132
- 58
Pearson M., Mansfield T. A..
Interacting effects of ozone and water stress on the stomatal resistance of beech
(Fagus sylvatica L.).
New Phytologist.
(1993);
123
351-358
- 59 Raschke K..
Action of abscisic acid on guard cells. Zeiger, E., Farquhar G. D., and Cowan I. R., eds. Stomatal Function. Stanford, USA;
Stanford University Press (1987): 253-279
- 60
Rennenberg H., Seiler W., Matyssek R., Gessler A., Kreuzwieser J..
Die Buche (Fagus sylvatica L.) - ein Waldbaum ohne Zukunft im südlichen Mitteleuropa?.
Allgemeine Forst- und Jagdzeitung.
(2004);
175
210-224
- 61
Retzlaff W. A., Arthur M. A., Grulke N. E., Weinstein D. A., Gollands B..
Use of a single-tree simulation model to predict effects of ozone and drought on growth
of a white fir tree.
Tree Physiology.
(2000);
20
195-202
- 62
Saurer M., Maurer S., Matyssek R., Landolt W., Günthardt-Georg M. S., Siegenthaler U..
The influence of ozone and nutrition on δ13C in Betula pendula.
.
Oecologia.
(1995);
103
397-406
- 63 Scarascia-Mugnozza G. E., Karnosky D. F., Ceulemans R., Innes J. L..
The impact of CO2 and other greenhouse gases on forest ecosystems: an introduction. Karnosky, D. F., Scarascia-Mugnozza, G., Ceulemans, R., and Innes, J. L., eds. The
Impacts of Carbon Dioxide and Other Greenhouse Gases On Forest Ecosystems. Wallington,
UK; CABI Press (2001): 1-16
- 64 Schulze E.‐D., Hall A. E..
Stomatal responses, water loss, and nutrient relations in contrasting environments. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Encyclopedia of
Plant Ecology 12B, Physiological Plant Ecology II. Berlin, Heidelberg, New York; Springer
(1982): 182-230
- 65
Sehmer L., Fontaine V., Antoni F., Dizengremel P..
Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism
of spruce needles. Catabolic and detoxification pathways.
Physiologia Plantarum.
(1998);
102
605-611
- 66
Sharma Y. K., Davis K. R..
The effects of ozone on antioxidant responses in plants.
Free Radical Biology and Medicine.
(1997);
23
480-488
- 67
Skärby L., Ro-Poulsen H., Wellburn F. A. M., Sheppard L. J..
Impacts of ozone on forests: a European perspective.
New Phytologist.
(1998);
139
109-122
- 68
Spence D. R., Rykiel E. J., Sharpe P. J. H..
Ozone alters carbon allocation in loblolly pine assessment with carbon-11 labeling.
Environmental Pollution.
(1990);
64
93-106
- 69
Stribley. G. H., Ashmore M. R..
Quantitative changes in twig growth pattern of young woodland beech (Fagus sylvatica L.) in relation to climate and ozone pollution over 10 years.
Forest Ecology and Management.
(2002);
157
191-204
- 70
Torsethaugen G., Pell E. J., Assmann S. M..
Ozone inhibits guard cell K+ channels implicated in stomatal opening.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
13577-13582
- 71
Tuomainen J., Pellinen R., Roy S., Kiiskinen M., Eloranta T., Karjalainen and R.,
Kangasjärvi J..
Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical
and gene expression level.
Journal of Plant Physiology.
(1996);
148
179-188
- 72
Wallin G., Karlsson P. E., Sellden G., Ottosson S., Medin E. L., Pleijel H., Skärby L..
Impact of four years exposure to different levels of ozone, phosphorus and drought
on chlorophyll, mineral nutrients, and stem volume of Norway spruce, Picea abies.
.
Physiologia Plantarum.
(2002);
114
192-206
- 73
Werner H., Fabian P..
Free-air fumigation of mature trees.
Environmental Science and Pollution Research.
(2002);
9
117-121
- 74
Wieser G., Havranek W. M..
Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects
of ozone exposure.
Trees.
(1993);
7
227-232
R. Matyssek
Ecophysiology of Plants
Technische Universität München
Am Hochanger 13
85354 Freising
Germany
Email: matyssek@wzw.tum.de
Editor: B. Schulz