Zusammenfassung
Eine normale Gewebefunktion ist auf die adäquate Sauerstoff- und Nährstoffversorgung
durch Blutgefäße angewiesen. Die Abläufe der Bildung und Reifung von Gefäßen werden
initiiert und aufrechterhalten durch unterschiedliche Wachstumsfaktoren. Dem Wachstumsfaktor
VEGF kommt in diesen Prozessen eine herausragende Bedeutung zu. Die Erzeugung subletaler
Ischämie als Angiogenesereiz ist unter dem Namen „Delay“ ein in der Plastischen Chirurgie
etabliertes Verfahren, deren zugrunde liegende molekularbiologische Mechanismen jedoch
weitgehend unbekannt sind. Ziel der vorliegenden Arbeit ist die weitere Aufklärung
des Zusammenhangs zwischen VEGF und dem Delay-Phänomen, insbesondere im Vergleich
zur adenoviralen Gentherapie als potenziell konkurrierendes, nicht-invasives Verfahren.
An 32 männlichen Crl:CD(SD)-Ratten wurde die VEGF-Konzentration in Haut und Muskulatur
nach subdermaler Injektion von AdCMV.VEGF165 oder reiner Umschneidung (Delay) einer überdimensionierten Lappenplastik vom „Random-pattern“-Typ
gemessen und mit Kontrollen verglichen. Weiterhin wurden nach VEGF-Gentherapie oder
Delay nach jeweils sieben Tagen die Lappenplastik gehoben und die Auswirkung der Therapie
auf die postoperative Durchblutung mittels Indocyaningrün-Laser-Fluoreszenzangiographie
und auf die Größe der überlebenden und nekrotischen Lappenfläche untersucht. Im Hautanteil
der Lappenplastiken in der VEGF-Gentherapie-Gruppe und der Delay-Gruppe konnten jeweils
gegenüber den Kontrollen signifikant erhöhte VEGF-Konzentrationen nachgewiesen werden.
In der angrenzenden Muskulatur zeigten sich keine signifikanten Unterschiede zwischen
den Gruppen. Bei der Messung der Perfusion unmittelbar postoperativ wies nur die VEGF-Gentherapie-Gruppe
einen signifikant erhöhten Perfusionsindex gegenüber den Kontrollen auf. Die Messung
der überlebten Lappenfläche ergab für die AdVEGF-Gruppe eine signifikante Erhöhung
gegenüber der Kontroll- und der Delay-Gruppe. Das Delay-Verfahren resultiert in einer
signifikant und lokalisiert erhöhten Konzentration des Wachstumsfaktors VEGF. Die
gentherapeutische Verwendung dieses Wachstumsfaktors alleine ist in der Lage, die
Hautdurchblutung zu steigern und die Entstehung von Nekrose zu reduzieren. Bei Gentherapie
mit VEGF und Delay scheinen ähnliche Phänomene abzulaufen, wobei die Therapie mit
AdVEGF eine deutliche Überlegenheit zeigt.
Abstract
A regular tissue functioning requires the adequate supply of oxygen and nutrient via
blood vessels. The sequences of formation and maturation of vessels are initiated
and maintained by different growth factors. The VEGF growth factor plays an exceptional
role in these mechanisms. The creation of sublethal ischemia as an angiogenic stimulus
known as “Delay” is a well established procedure in plastic surgery, although the
underlying molecular biological mechanisms still remain unknown. The important role
of VEGF and its regulation depending on oxygen pressure suggest a strong connection
between this growth factor and the delay phenomenon. The VEGF concentration in skin
and underlying muscle was measured in overdimensioned random pattern flaps on 32 male
Sprague-Dawley rats after either VEGF gene therapy or circumcision without elevation
of the flap and compared to controls. Additional random pattern flaps were raised
seven days post gene therapy or delay. The effect on the flap perfusion was measured
postoperatively using Indocyanine green Laser Fluoroscopy and the size of the surviving
and necrotic areas of the flaps were analysed. The skin of the random pattern flaps
showed both in the Delay group and in the VEGF gene therapy group a significantly
elevated VEGF concentration compared to the controls. The underlying rectus abdominis
muscle showed no significant differences in VEGF concentration between the groups.
The flap perfusion postoperatively was significantly increased solely in the VEGF
gene therapy group. The analysis of the surviving area of the flaps showed a significant
increase over the controls in the gene therapy group. The Delay procedure results
in a significantly and locally raised concentration of the VEGF growth factor. The
gene therapeutical use of this growth factor allows us to raise flap perfusion and
to reduce necrosis. Both VEGF gene therapy and Delay seem to promote similar mechanisms
whereas the gene therapy produced superior results in this setting.
Schlüsselwörter
VEGF - Gentherapie - Delay-Technik - Komplikation Lappenplastik - Random-pattern-Typ
Key words
VEGF - gene therapy - delay technique - flap necrosis - random pattern flap
Literatur
1
Abraham J A, Whang J L, Tumolo A, Mergia A, Friedman J, Gospodarowicz D, Fiddes J C.
Human basic fibroblast growth factor: Nucleotide sequence and genomic organization.
Embo J.
1986;
5
2523-2528
2
Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C.
Analysis of mural cell recruitment to tumor vessels.
Circulation.
2002;
105
112-117
3
Arras M, Ito W D, Scholz D, Winkler B, Schaper J, Schaper W.
Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb.
J Clin Invest.
1998;
101
40-50
4
Ashrafpour H, Huang N, Neligan P C, Forrest C R, Addison P D, Moses M A, Levine R H,
Pang C Y.
Vasodilator effect and mechanism of action of vascular endothelial growth factor in
skin vasculature.
Am J Physiol Heart Circ Physiol.
2004;
286
H946-H954
5
Barker J H, Frank J, Bidiwala S B, Stengel C K, Carroll S M, Carroll C M, van Aalst,
Anderson G L.
An animal model to study microcirculatory changes associated with vascular delay.
Br J Plast Surg.
1999;
52
133-142
6
Bellomo D, Headrick J P, Silins G U, Paterson C A, Thomas P S, Gartside M, Mould A,
Cahill M M, Tonks I D, Grimmond S M, Townson S, Wells C, Little M, Cummings M C, Hayward N K,
Kay G F.
Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts,
dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia.
Circ Res.
2000;
86
E29-E35
7
Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R.
Expression and tissue concentration of vascular endothelial growth factor, its receptors,
and localization in the bovine corpus luteum during estrous cycle and pregnancy.
Biol Reprod.
2000;
63
1106-1114
8
Breier G, Albrecht U, Sterrer S, Risau W.
Expression of vascular endothelial growth factor during embryonic angiogenesis and
endothelial cell differentiation.
Development.
1992;
114
521-532
9
Brown L F, Berse B, Tognazzi K, Manseau E J, Van de Water L, Senger D R, Dvorak H F,
Rosen S.
Vascular permeability factor mRNA and protein expression in human kidney.
Kidney Int.
1992;
42
1457-1461
10
Brown L F, Yeo K T, Berse B, Yeo T K, Senger D R, Dvorak H F, van de Water L.
Expression of vascular permeability factor (vascular endothelial growth factor) by
epidermal keratinocytes during wound healing.
J Exp Med.
1992;
176
1375-1379
11
Burroughs K D, Kayda D B, Sakhuja K, Hudson Y, Jakubczak J, Bristol J A, Ennist D,
Hallenbeck P, Kaleko M, Connelly S.
Potentiation of oncolytic adenoviral vector efficacy with gutless vectors encoding
GMCSF or TRAIL.
Cancer Gene Ther.
2004;
11
92-102
12
Byzova T V, Goldman C K, Jankau J, Chen J, Cabrera G, Achen M G, Stacker S A, Carnevale K A,
Siemionow M, Deitcher S R, DiCorleto P E.
Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular
patterns in vivo.
Blood.
2002;
99
4434-4442
13
Callegari P R, Taylor G I, Caddy C M, Minabe T.
An anatomic review of the delay phenomenon: I. Experimental studies.
Plast Reconstr Surg.
1992;
89
397-407
14
Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post M J, Wahlberg E, Leboulch P, Cao Y.
Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by
a combination of PDGF‐BB and FGF‐2.
Nat Med.
2003;
9
604-613
15
Carmeliet P.
Mechanisms of angiogenesis and arteriogenesis.
Nat Med.
2000;
6
389-395
16
Carmeliet P.
Angiogenesis in health and disease.
Nat Med.
2003;
9
653-660
17
Coskunfirat O K, Oksar H S, Ozgentas H E.
Effect of the delay phenomenon in the rat single-perforator-based abdominal skin flap
model.
Ann Plast Surg.
2000;
45
42-47
18
Davis S, Aldrich T H, Jones P F, Acheson A, Compton D L, Jain V, Ryan T E, Bruno J,
Radziejewski C, Maisonpierre P C, Yancopoulos G D.
Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression
cloning.
Cell.
1996;
87
1161-1169
19
Dhar S C, Taylor G I.
The delay phenomenon: The story unfolds.
Plast Reconstr Surg.
1999;
104
2079-2091
20
Dinehart S M, Kincannon J, Geronemus R.
Hemangiomas: Evaluation and treatment.
Dermatol Surg.
2001;
27
475-485
21
Dor Y, Porat R, Keshet E.
Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen
homeostasis.
Am J Physiol Cell Physiol.
2001;
280
C1367-C1374
22
Dvorak H F, Detmar M, Claffey K P, Nagy J A, van de Water L, Senger D R.
Vascular permeability factor/vascular endothelial growth factor: An important mediator
of angiogenesis in malignancy and inflammation.
Int Arch Allergy Immunol.
1995;
107
233-235
23
Fava R A, Olsen N J, Spencer-Green G, Yeo K T, Yeo T K, Berse B, Jackman R W, Senger D R,
Dvorak H F, Brown L F.
Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and
expression in human synovial fluids and rheumatoid synovial tissue.
J Exp Med.
1994;
180
341-346
24
Ferrara N.
Molecular and biological properties of vascular endothelial growth factor.
J Mol Med.
1999;
77
527-543
25
Ferrara N.
Role of vascular endothelial growth factor in the regulation of angiogenesis.
Kidney Int.
1999;
56
794-814
26
Ferrara N, Davis-Smyth T.
The biology of vascular endothelial growth factor.
Endocr Rev.
1997;
18
4-25
27
Ferrara N, Gerber H P, LeCouter J.
The biology of VEGF and its receptors.
Nat Med.
2003;
9
669-676
28
Ferrara N, Houck K A, Jakeman L B, Winer J, Leung D W.
The vascular endothelial growth factor family of polypeptides.
J Cell Biochem.
1991;
47
211-218
29
Flower R W.
Injection technique for indocyanine green and sodium fluorescein dye angiography of
the eye.
Invest Ophthalmol.
1973;
12
881-895
30
Folkman J, Klagsbrun M.
Angiogenic factors.
Science.
1987;
235
442-447
31
Folkman J, Shing Y.
Angiogenesis.
J Biol Chem.
1992;
267
10931-10934
32
Gerber H P, Condorelli F, Park J, Ferrara N.
Differential transcriptional regulation of the two vascular endothelial growth factor
receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia.
J Biol Chem.
1997;
272
23659-23667
33
Gersting S W, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C, Reinhardt D,
Rosenecker J.
Gene delivery to respiratory epithelial cells by magnetofection.
J Gene Med.
2004;
6
913-922
34
Giunta R E, Holzbach T, Taskov C, Holm P S, Brill T, Busch R, Gänsbacher B, Biemer E.
Prediction of flap necrosis with laser induced indocyanine green fluorescence in a
rat model.
Br J Plast Surg.
2005;
58
695-701
35
Giunta R E, Holzbach T, Taskov C, Holm P S, Konerding M A, Schams D, Biemer E, Gänsbacher B.
AdVEGF(165) gene transfer increases survival in overdimensioned skin flaps.
J Gene Med.
2005;
7
297-306
36
Goede V, Schmidt T, Kimmina S, Kozian D, Augustin H G.
Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis.
Lab Invest.
1998;
78
1385-1394
37
Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin D J, Zhu Z, Bohlen P,
Witte L, Hendrikx J, Hackett N R, Crystal R G, Moore M A, Werb Z, Lyden D, Rafii S.
Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells
from bone-marrow microenvironment.
Nat Med.
2002;
8
841-849
38
Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley J M, Senior R M,
Shibuya M.
MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific
metastasis.
Cancer Cell.
2002;
2
289-300
39
Holash J, Maisonpierre P C, Compton D, Boland P, Alexander C R, Zagzag D, Yancopoulos G D,
Wiegand S J.
Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.
Science.
1999;
284
1994-1998
40
Holash J, Wiegand S J, Yancopoulos G D.
New model of tumor angiogenesis: Dynamic balance between vessel regression and growth
mediated by angiopoietins and VEGF.
Oncogene.
1999;
18
5356-5362
41
Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W.
The vascular endothelial growth factor family: Identification of a fourth molecular
species and characterization of alternative splicing of RNA.
Mol Endocrinol.
1991;
5
1806-1814
42
Huth S, Lausier J, Gersting S W, Rudolph C, Plank C, Welsch U, Rosenecker J.
Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene
transfer.
J Gene Med.
2004;
6
923-936
43
Iijima K, Yoshikawa N, Connolly D T, Nakamura H.
Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability
factor.
Kidney Int.
1993;
44
959-966
44
Iijima T, Aoyagi T, Iwao Y, Masuda J, Fuse M, Kobayashi N, Sankawa H.
Cardiac output and circulating blood volume analysis by pulse dye-densitometry.
J Clin Monit.
1997;
13
81-89
45
Islamoglu K, Tetik G, Ozgentas H E.
Effect of the delay phenomenon on survival of rat island skin flaps with total venous
occlusion.
J Reconstr Microsurg.
2003;
19
473-476
46
Isner J M, Takayuki A.
Therapeutic angiogenesis.
Front Biosci.
1998;
3
e49-e69
47
Jain R K.
Molecular regulation of vessel maturation.
Nat Med.
2003;
9
685-693
48
Jain R K, Munn L L.
Leaky vessels? Call Ang1!.
Nat Med.
2000;
6
131-132
49
Kreppel F, Kochanek S.
Long-term transgene expression in proliferating cells mediated by episomally maintained
high-capacity adenovirus vectors.
J Virol.
2004;
78
9-22
50
Lambert D M, Rigano W C.
Delaying the skin for TRAM flaps.
Curr Surg.
2000;
57
480-483
51
Lineaweaver W C, Lei M P, Mustain W, Oswald T M, Cui D, Zhang F.
Vascular endothelium growth factor, surgical delay, and skin flap survival.
Ann Surg.
2004;
239
866-873
52
Maeda H, Danel C, Crystal R G.
Adenovirus-mediated transfer of human lipase complementary DNA to the gallbladder.
Gastroenterology.
1994;
106
1638-1644
53
Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D,
McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D.
Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
Science.
1997;
277
55-60
54
Maru Y, Yamaguchi S, Shibuya M.
Flt-1, a receptor for vascular endothelial growth factor, has transforming and morphogenic
potentials.
Oncogene.
1998;
16
2585-2595
55
McGregor I A, Morgan G.
Axial and random pattern flaps.
Br J Plast Surg.
1973;
26
202-213
56
Mergia A, Eddy R, Abraham J A, Fiddes J C, Shows T B.
The genes for basic and acidic fibroblast growth factors are on different human chromosomes.
Biochem Biophys Res Commun.
1986;
138
644-651
57
Monacci W T, Merrill M J, Oldfield E H.
Expression of vascular permeability factor/vascular endothelial growth factor in normal
rat tissues.
Am J Physiol.
1993;
264
C995-C1002
58
Morris S F, Taylor G I.
The time sequence of the delay phenomenon: When is a surgical delay effective? An
experimental study.
Plast Reconstr Surg.
1995;
95
526-533
59
Muckle T J.
Plasma proteins binding of indocyanine green.
Biochem Med.
1976;
15
17-21
60
Muhlhauser J, Merrill M J, Pili R, Maeda H, Bacic M, Bewig B, Passaniti A, Edwards N A,
Crystal R G, Capogrossi M C.
VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces
angiogenesis in vivo.
Circ Res.
1995;
77
1077-1086
61
Nabel E G, Shum L, Pompili V J, Yang Z Y, San H, Shu H B, Liptay S, Gold L, Gordon D,
Derynck R. et al .
Direct transfer of transforming growth factor beta 1 gene into arteries stimulates
fibrocellular hyperplasia.
Proc Natl Acad Sci USA.
1993;
90
10759-10763
62
Nabel E G, Yang Z Y, Plautz G, Forough R, Zhan X, Haudenschild C C, Maciag T, Nabel G J.
Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis
in arteries in vivo.
Nature.
1993;
362
844-846
63
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z.
Vascular endothelial growth factor (VEGF) and its receptors.
Faseb J.
1999;
13
9-22
64
Okochi O, Kaneko T, Sugimoto H, Inoue S, Takeda S, Nakao A.
ICG pulse spectrophotometry for perioperative liver function in hepatectomy.
J Surg Res.
2002;
103
109-113
65
Olofsson B, Jeltsch M, Eriksson U, Alitalo K.
Current biology of VEGF‐B and VEGF‐C.
Curr Opin Biotechnol.
1999;
10
528-535
66
Oshima Y, Deering T, Oshima S, Nambu H, Reddy P S, Kaleko M, Connelly S, Hackett S F,
Campochiaro P A.
Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth
factor.
J Cell Physiol.
2004;
199
412-417
67
Park J E, Chen H H, Winer J, Houck K A, Ferrara N.
Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity,
in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR.
J Biol Chem.
1994;
269
25646-25654
68
Park J E, Keller G A, Ferrara N.
The vascular endothelial growth factor (VEGF) isoforms: differential deposition into
the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound
VEGF.
Mol Biol Cell.
1993;
4
1317-1326
69
Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K.
Vascular endothelial growth factor is induced in response to transforming growth factor-beta
in fibroblastic and epithelial cells.
J Biol Chem.
1994;
269
6271-6274
70
Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H,
Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M.
VEGFR‐1-selective VEGF homologue PlGF is arteriogenic: Evidence for a monocyte-mediated
mechanism.
Circ Res.
2003;
92
378-385
71
Plank C, Scherer F, Schillinger U, Bergemann C, Anton M.
Magnetofection: Enhancing and targeting gene delivery with superparamagnetic nanoparticles
and magnetic fields.
J Liposome Res.
2003;
13
29-32
72
Plank C, Schillinger U, Scherer F, Bergemann C, Remy J S, Krotz F, Anton M, Lausier J,
Rosenecker J.
The magnetofection method: Using magnetic force to enhance gene delivery.
Biol Chem.
2003;
384
737-747
73
Sato T N, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M,
Gridley T, Wolburg H, Risau W, Qin Y.
Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.
Nature.
1995;
376
70-74
74
Schaper W, Scholz D.
Factors regulating arteriogenesis.
Arterioscler Thromb Vasc Biol.
2003;
23
1143-1151
75
Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gänsbacher B, Plank C.
Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and
in vivo.
Gene Ther.
2002;
9
102-109
76
Semenza G.
Signal transduction to hypoxia-inducible factor 1.
Biochem Pharmacol.
2002;
64
993-998
77
Senger D R, Galli S J, Dvorak A M, Perruzzi C A, Harvey V S, Dvorak H F.
Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites
fluid.
Science.
1983;
219
983-985
78
Shalaby F, Rossant J, Yamaguchi T P, Gertsenstein M, Wu X F, Breitman M L, Schuh A C.
Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.
Nature.
1995;
376
62-66
79
Shim W S, Teh M, Bapna A, Kim I, Koh G Y, Mack P O, Ge R.
Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical
cancer in mice.
Exp Cell Res.
2002;
279
299-309
80
Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E.
Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors
in mice suggest a role in hormonally regulated angiogenesis.
J Clin Invest.
1993;
91
2235-2243
81
Suri C, Jones P F, Patan S, Bartunkova S, Maisonpierre P C, Davis S, Sato T N, Yancopoulos G D.
Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic
angiogenesis.
Cell.
1996;
87
1171-1180
82
Taipale J, Makinen T, Arighi E, Kukk E, Karkkainen M, Alitalo K.
Vascular endothelial growth factor receptor-3.
Curr Top Microbiol Immunol.
1999;
237
85-96
83
Taylor G I, Corlett R J, Caddy C M, Zelt R G.
An anatomic review of the delay phenomenon: II. Clinical applications.
Plast Reconstr Surg.
1992;
89
408-416
84
Thurston G.
Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage.
J Anat.
2002;
200
575-580
85
Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes J C, Abraham J A.
The human gene for vascular endothelial growth factor. Multiple protein forms are
encoded through alternative exon splicing.
J Biol Chem.
1991;
266
11947-11954
86
Van Royen N, Piek J J, Schaper W, Bode C, Buschmann I.
Arteriogenesis: Mechanisms and modulation of collateral artery development.
J Nucl Cardiol.
2001;
8
687-693
87
Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C H.
Different signal transduction properties of KDR and Flt1, two receptors for vascular
endothelial growth factor.
J Biol Chem.
1994;
269
26988-26995
88
Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N,
Kearney M, Hu J S, Isner J M.
Vascular endothelial growth factor-C (VEGF‐C/VEGF‐2) promotes angiogenesis in the
setting of tissue ischemia.
Am J Pathol.
1998;
153
381-394
89
Yancopoulos G D, Davis S, Gale N W, Rudge J S, Wiegand S J, Holash J.
Vascular-specific growth factors and blood vessel formation.
Nature.
2000;
407
242-248
90
Yang D, Morris S F.
Comparison of two different delay procedures in a rat skin flap model.
Plast Reconstr Surg.
1998;
102
1591-1597
91
Ylä-Herttuala S M, Alitalo K.
Gene transfer as a tool to induce therapeutic vascular growth.
Nature Med.
2003;
9
694-701
Thomas Holzbach Priv.-Doz. Dr. med. Riccardo E. Giunta
Abteilung für Plastische und Wiederherstellungschirurgie Klinikum rechts der Isar Technische Universität München
Ismaninger Straße 22
81675 München
eMail: R.Giunta@lrz.tu-muenchen.de