Handchir Mikrochir Plast Chir 2005; 37(6): 365-374
DOI: 10.1055/s-2005-872992
Originalarbeit

Georg Thieme Verlag KG Stuttgart · New York

Angiogenese-Gentherapie mit AdVEGF165 - Eine Art „Delay“ für Lappenplastiken?

AdVEGF165 Gene TherapyA New Delay Procedure for Flaps?T. Holzbach1 , C. Taskov1 , I. Neshkova1 , P. S. Holm2 , M. A. Konerding4 , D. Schams3 , B. Gänsbacher2 , E. Biemer1 , R. E. Giunta1
  • 1Abteilung für Plastische und Wiederherstellungschirurgie (Vorstand: Univ.-Prof. Dr. E. Biemer), Klinikum rechts der Isar, Technische Universität München
  • 2Institut für Experimentelle Onkologie und Therapieforschung (Vorstand: Univ.-Prof. Dr. B. Gänsbacher), Klinikum rechts der Isar, Technische Universität München
  • 3Institut für Physiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München
  • 4Anatomisches Institut, Johannes-Gutenberg-Universität Mainz
Further Information

Publication History

Eingang des Manuskriptes: 28.7.2005

Angenommen: 20.10.2005

Publication Date:
02 January 2006 (online)

Zusammenfassung

Eine normale Gewebefunktion ist auf die adäquate Sauerstoff- und Nährstoffversorgung durch Blutgefäße angewiesen. Die Abläufe der Bildung und Reifung von Gefäßen werden initiiert und aufrechterhalten durch unterschiedliche Wachstumsfaktoren. Dem Wachstumsfaktor VEGF kommt in diesen Prozessen eine herausragende Bedeutung zu. Die Erzeugung subletaler Ischämie als Angiogenesereiz ist unter dem Namen „Delay“ ein in der Plastischen Chirurgie etabliertes Verfahren, deren zugrunde liegende molekularbiologische Mechanismen jedoch weitgehend unbekannt sind. Ziel der vorliegenden Arbeit ist die weitere Aufklärung des Zusammenhangs zwischen VEGF und dem Delay-Phänomen, insbesondere im Vergleich zur adenoviralen Gentherapie als potenziell konkurrierendes, nicht-invasives Verfahren. An 32 männlichen Crl:CD(SD)-Ratten wurde die VEGF-Konzentration in Haut und Muskulatur nach subdermaler Injektion von AdCMV.VEGF165 oder reiner Umschneidung (Delay) einer überdimensionierten Lappenplastik vom „Random-pattern“-Typ gemessen und mit Kontrollen verglichen. Weiterhin wurden nach VEGF-Gentherapie oder Delay nach jeweils sieben Tagen die Lappenplastik gehoben und die Auswirkung der Therapie auf die postoperative Durchblutung mittels Indocyaningrün-Laser-Fluoreszenzangiographie und auf die Größe der überlebenden und nekrotischen Lappenfläche untersucht. Im Hautanteil der Lappenplastiken in der VEGF-Gentherapie-Gruppe und der Delay-Gruppe konnten jeweils gegenüber den Kontrollen signifikant erhöhte VEGF-Konzentrationen nachgewiesen werden. In der angrenzenden Muskulatur zeigten sich keine signifikanten Unterschiede zwischen den Gruppen. Bei der Messung der Perfusion unmittelbar postoperativ wies nur die VEGF-Gentherapie-Gruppe einen signifikant erhöhten Perfusionsindex gegenüber den Kontrollen auf. Die Messung der überlebten Lappenfläche ergab für die AdVEGF-Gruppe eine signifikante Erhöhung gegenüber der Kontroll- und der Delay-Gruppe. Das Delay-Verfahren resultiert in einer signifikant und lokalisiert erhöhten Konzentration des Wachstumsfaktors VEGF. Die gentherapeutische Verwendung dieses Wachstumsfaktors alleine ist in der Lage, die Hautdurchblutung zu steigern und die Entstehung von Nekrose zu reduzieren. Bei Gentherapie mit VEGF und Delay scheinen ähnliche Phänomene abzulaufen, wobei die Therapie mit AdVEGF eine deutliche Überlegenheit zeigt.

Abstract

A regular tissue functioning requires the adequate supply of oxygen and nutrient via blood vessels. The sequences of formation and maturation of vessels are initiated and maintained by different growth factors. The VEGF growth factor plays an exceptional role in these mechanisms. The creation of sublethal ischemia as an angiogenic stimulus known as “Delay” is a well established procedure in plastic surgery, although the underlying molecular biological mechanisms still remain unknown. The important role of VEGF and its regulation depending on oxygen pressure suggest a strong connection between this growth factor and the delay phenomenon. The VEGF concentration in skin and underlying muscle was measured in overdimensioned random pattern flaps on 32 male Sprague-Dawley rats after either VEGF gene therapy or circumcision without elevation of the flap and compared to controls. Additional random pattern flaps were raised seven days post gene therapy or delay. The effect on the flap perfusion was measured postoperatively using Indocyanine green Laser Fluoroscopy and the size of the surviving and necrotic areas of the flaps were analysed. The skin of the random pattern flaps showed both in the Delay group and in the VEGF gene therapy group a significantly elevated VEGF concentration compared to the controls. The underlying rectus abdominis muscle showed no significant differences in VEGF concentration between the groups. The flap perfusion postoperatively was significantly increased solely in the VEGF gene therapy group. The analysis of the surviving area of the flaps showed a significant increase over the controls in the gene therapy group. The Delay procedure results in a significantly and locally raised concentration of the VEGF growth factor. The gene therapeutical use of this growth factor allows us to raise flap perfusion and to reduce necrosis. Both VEGF gene therapy and Delay seem to promote similar mechanisms whereas the gene therapy produced superior results in this setting.

Literatur

  • 1 Abraham J A, Whang J L, Tumolo A, Mergia A, Friedman J, Gospodarowicz D, Fiddes J C. Human basic fibroblast growth factor: Nucleotide sequence and genomic organization.  Embo J. 1986;  5 2523-2528
  • 2 Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C. Analysis of mural cell recruitment to tumor vessels.  Circulation. 2002;  105 112-117
  • 3 Arras M, Ito W D, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb.  J Clin Invest. 1998;  101 40-50
  • 4 Ashrafpour H, Huang N, Neligan P C, Forrest C R, Addison P D, Moses M A, Levine R H, Pang C Y. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature.  Am J Physiol Heart Circ Physiol. 2004;  286 H946-H954
  • 5 Barker J H, Frank J, Bidiwala S B, Stengel C K, Carroll S M, Carroll C M, van Aalst, Anderson G L. An animal model to study microcirculatory changes associated with vascular delay.  Br J Plast Surg. 1999;  52 133-142
  • 6 Bellomo D, Headrick J P, Silins G U, Paterson C A, Thomas P S, Gartside M, Mould A, Cahill M M, Tonks I D, Grimmond S M, Townson S, Wells C, Little M, Cummings M C, Hayward N K, Kay G F. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia.  Circ Res. 2000;  86 E29-E35
  • 7 Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy.  Biol Reprod. 2000;  63 1106-1114
  • 8 Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation.  Development. 1992;  114 521-532
  • 9 Brown L F, Berse B, Tognazzi K, Manseau E J, Van de Water L, Senger D R, Dvorak H F, Rosen S. Vascular permeability factor mRNA and protein expression in human kidney.  Kidney Int. 1992;  42 1457-1461
  • 10 Brown L F, Yeo K T, Berse B, Yeo T K, Senger D R, Dvorak H F, van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing.  J Exp Med. 1992;  176 1375-1379
  • 11 Burroughs K D, Kayda D B, Sakhuja K, Hudson Y, Jakubczak J, Bristol J A, Ennist D, Hallenbeck P, Kaleko M, Connelly S. Potentiation of oncolytic adenoviral vector efficacy with gutless vectors encoding GMCSF or TRAIL.  Cancer Gene Ther. 2004;  11 92-102
  • 12 Byzova T V, Goldman C K, Jankau J, Chen J, Cabrera G, Achen M G, Stacker S A, Carnevale K A, Siemionow M, Deitcher S R, DiCorleto P E. Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo.  Blood. 2002;  99 4434-4442
  • 13 Callegari P R, Taylor G I, Caddy C M, Minabe T. An anatomic review of the delay phenomenon: I. Experimental studies.  Plast Reconstr Surg. 1992;  89 397-407
  • 14 Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post M J, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF‐BB and FGF‐2.  Nat Med. 2003;  9 604-613
  • 15 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis.  Nat Med. 2000;  6 389-395
  • 16 Carmeliet P. Angiogenesis in health and disease.  Nat Med. 2003;  9 653-660
  • 17 Coskunfirat O K, Oksar H S, Ozgentas H E. Effect of the delay phenomenon in the rat single-perforator-based abdominal skin flap model.  Ann Plast Surg. 2000;  45 42-47
  • 18 Davis S, Aldrich T H, Jones P F, Acheson A, Compton D L, Jain V, Ryan T E, Bruno J, Radziejewski C, Maisonpierre P C, Yancopoulos G D. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning.  Cell. 1996;  87 1161-1169
  • 19 Dhar S C, Taylor G I. The delay phenomenon: The story unfolds.  Plast Reconstr Surg. 1999;  104 2079-2091
  • 20 Dinehart S M, Kincannon J, Geronemus R. Hemangiomas: Evaluation and treatment.  Dermatol Surg. 2001;  27 475-485
  • 21 Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis.  Am J Physiol Cell Physiol. 2001;  280 C1367-C1374
  • 22 Dvorak H F, Detmar M, Claffey K P, Nagy J A, van de Water L, Senger D R. Vascular permeability factor/vascular endothelial growth factor: An important mediator of angiogenesis in malignancy and inflammation.  Int Arch Allergy Immunol. 1995;  107 233-235
  • 23 Fava R A, Olsen N J, Spencer-Green G, Yeo K T, Yeo T K, Berse B, Jackman R W, Senger D R, Dvorak H F, Brown L F. Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and expression in human synovial fluids and rheumatoid synovial tissue.  J Exp Med. 1994;  180 341-346
  • 24 Ferrara N. Molecular and biological properties of vascular endothelial growth factor.  J Mol Med. 1999;  77 527-543
  • 25 Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis.  Kidney Int. 1999;  56 794-814
  • 26 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor.  Endocr Rev. 1997;  18 4-25
  • 27 Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 28 Ferrara N, Houck K A, Jakeman L B, Winer J, Leung D W. The vascular endothelial growth factor family of polypeptides.  J Cell Biochem. 1991;  47 211-218
  • 29 Flower R W. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye.  Invest Ophthalmol. 1973;  12 881-895
  • 30 Folkman J, Klagsbrun M. Angiogenic factors.  Science. 1987;  235 442-447
  • 31 Folkman J, Shing Y. Angiogenesis.  J Biol Chem. 1992;  267 10931-10934
  • 32 Gerber H P, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia.  J Biol Chem. 1997;  272 23659-23667
  • 33 Gersting S W, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C, Reinhardt D, Rosenecker J. Gene delivery to respiratory epithelial cells by magnetofection.  J Gene Med. 2004;  6 913-922
  • 34 Giunta R E, Holzbach T, Taskov C, Holm P S, Brill T, Busch R, Gänsbacher B, Biemer E. Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model.  Br J Plast Surg. 2005;  58 695-701
  • 35 Giunta R E, Holzbach T, Taskov C, Holm P S, Konerding M A, Schams D, Biemer E, Gänsbacher B. AdVEGF(165) gene transfer increases survival in overdimensioned skin flaps.  J Gene Med. 2005;  7 297-306
  • 36 Goede V, Schmidt T, Kimmina S, Kozian D, Augustin H G. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis.  Lab Invest. 1998;  78 1385-1394
  • 37 Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin D J, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett N R, Crystal R G, Moore M A, Werb Z, Lyden D, Rafii S. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment.  Nat Med. 2002;  8 841-849
  • 38 Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley J M, Senior R M, Shibuya M. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis.  Cancer Cell. 2002;  2 289-300
  • 39 Holash J, Maisonpierre P C, Compton D, Boland P, Alexander C R, Zagzag D, Yancopoulos G D, Wiegand S J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284 1994-1998
  • 40 Holash J, Wiegand S J, Yancopoulos G D. New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF.  Oncogene. 1999;  18 5356-5362
  • 41 Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W. The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA.  Mol Endocrinol. 1991;  5 1806-1814
  • 42 Huth S, Lausier J, Gersting S W, Rudolph C, Plank C, Welsch U, Rosenecker J. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer.  J Gene Med. 2004;  6 923-936
  • 43 Iijima K, Yoshikawa N, Connolly D T, Nakamura H. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor.  Kidney Int. 1993;  44 959-966
  • 44 Iijima T, Aoyagi T, Iwao Y, Masuda J, Fuse M, Kobayashi N, Sankawa H. Cardiac output and circulating blood volume analysis by pulse dye-densitometry.  J Clin Monit. 1997;  13 81-89
  • 45 Islamoglu K, Tetik G, Ozgentas H E. Effect of the delay phenomenon on survival of rat island skin flaps with total venous occlusion.  J Reconstr Microsurg. 2003;  19 473-476
  • 46 Isner J M, Takayuki A. Therapeutic angiogenesis.  Front Biosci. 1998;  3 e49-e69
  • 47 Jain R K. Molecular regulation of vessel maturation.  Nat Med. 2003;  9 685-693
  • 48 Jain R K, Munn L L. Leaky vessels? Call Ang1!.  Nat Med. 2000;  6 131-132
  • 49 Kreppel F, Kochanek S. Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors.  J Virol. 2004;  78 9-22
  • 50 Lambert D M, Rigano W C. Delaying the skin for TRAM flaps.  Curr Surg. 2000;  57 480-483
  • 51 Lineaweaver W C, Lei M P, Mustain W, Oswald T M, Cui D, Zhang F. Vascular endothelium growth factor, surgical delay, and skin flap survival.  Ann Surg. 2004;  239 866-873
  • 52 Maeda H, Danel C, Crystal R G. Adenovirus-mediated transfer of human lipase complementary DNA to the gallbladder.  Gastroenterology. 1994;  106 1638-1644
  • 53 Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D, McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.  Science. 1997;  277 55-60
  • 54 Maru Y, Yamaguchi S, Shibuya M. Flt-1, a receptor for vascular endothelial growth factor, has transforming and morphogenic potentials.  Oncogene. 1998;  16 2585-2595
  • 55 McGregor I A, Morgan G. Axial and random pattern flaps.  Br J Plast Surg. 1973;  26 202-213
  • 56 Mergia A, Eddy R, Abraham J A, Fiddes J C, Shows T B. The genes for basic and acidic fibroblast growth factors are on different human chromosomes.  Biochem Biophys Res Commun. 1986;  138 644-651
  • 57 Monacci W T, Merrill M J, Oldfield E H. Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues.  Am J Physiol. 1993;  264 C995-C1002
  • 58 Morris S F, Taylor G I. The time sequence of the delay phenomenon: When is a surgical delay effective? An experimental study.  Plast Reconstr Surg. 1995;  95 526-533
  • 59 Muckle T J. Plasma proteins binding of indocyanine green.  Biochem Med. 1976;  15 17-21
  • 60 Muhlhauser J, Merrill M J, Pili R, Maeda H, Bacic M, Bewig B, Passaniti A, Edwards N A, Crystal R G, Capogrossi M C. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo.  Circ Res. 1995;  77 1077-1086
  • 61 Nabel E G, Shum L, Pompili V J, Yang Z Y, San H, Shu H B, Liptay S, Gold L, Gordon D, Derynck R. et al . Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia.  Proc Natl Acad Sci USA. 1993;  90 10759-10763
  • 62 Nabel E G, Yang Z Y, Plautz G, Forough R, Zhan X, Haudenschild C C, Maciag T, Nabel G J. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo.  Nature. 1993;  362 844-846
  • 63 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors.  Faseb J. 1999;  13 9-22
  • 64 Okochi O, Kaneko T, Sugimoto H, Inoue S, Takeda S, Nakao A. ICG pulse spectrophotometry for perioperative liver function in hepatectomy.  J Surg Res. 2002;  103 109-113
  • 65 Olofsson B, Jeltsch M, Eriksson U, Alitalo K. Current biology of VEGF‐B and VEGF‐C.  Curr Opin Biotechnol. 1999;  10 528-535
  • 66 Oshima Y, Deering T, Oshima S, Nambu H, Reddy P S, Kaleko M, Connelly S, Hackett S F, Campochiaro P A. Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor.  J Cell Physiol. 2004;  199 412-417
  • 67 Park J E, Chen H H, Winer J, Houck K A, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR.  J Biol Chem. 1994;  269 25646-25654
  • 68 Park J E, Keller G A, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF.  Mol Biol Cell. 1993;  4 1317-1326
  • 69 Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells.  J Biol Chem. 1994;  269 6271-6274
  • 70 Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M. VEGFR‐1-selective VEGF homologue PlGF is arteriogenic: Evidence for a monocyte-mediated mechanism.  Circ Res. 2003;  92 378-385
  • 71 Plank C, Scherer F, Schillinger U, Bergemann C, Anton M. Magnetofection: Enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields.  J Liposome Res. 2003;  13 29-32
  • 72 Plank C, Schillinger U, Scherer F, Bergemann C, Remy J S, Krotz F, Anton M, Lausier J, Rosenecker J. The magnetofection method: Using magnetic force to enhance gene delivery.  Biol Chem. 2003;  384 737-747
  • 73 Sato T N, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation.  Nature. 1995;  376 70-74
  • 74 Schaper W, Scholz D. Factors regulating arteriogenesis.  Arterioscler Thromb Vasc Biol. 2003;  23 1143-1151
  • 75 Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gänsbacher B, Plank C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo.  Gene Ther. 2002;  9 102-109
  • 76 Semenza G. Signal transduction to hypoxia-inducible factor 1.  Biochem Pharmacol. 2002;  64 993-998
  • 77 Senger D R, Galli S J, Dvorak A M, Perruzzi C A, Harvey V S, Dvorak H F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.  Science. 1983;  219 983-985
  • 78 Shalaby F, Rossant J, Yamaguchi T P, Gertsenstein M, Wu X F, Breitman M L, Schuh A C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.  Nature. 1995;  376 62-66
  • 79 Shim W S, Teh M, Bapna A, Kim I, Koh G Y, Mack P O, Ge R. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice.  Exp Cell Res. 2002;  279 299-309
  • 80 Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis.  J Clin Invest. 1993;  91 2235-2243
  • 81 Suri C, Jones P F, Patan S, Bartunkova S, Maisonpierre P C, Davis S, Sato T N, Yancopoulos G D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis.  Cell. 1996;  87 1171-1180
  • 82 Taipale J, Makinen T, Arighi E, Kukk E, Karkkainen M, Alitalo K. Vascular endothelial growth factor receptor-3.  Curr Top Microbiol Immunol. 1999;  237 85-96
  • 83 Taylor G I, Corlett R J, Caddy C M, Zelt R G. An anatomic review of the delay phenomenon: II. Clinical applications.  Plast Reconstr Surg. 1992;  89 408-416
  • 84 Thurston G. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage.  J Anat. 2002;  200 575-580
  • 85 Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes J C, Abraham J A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing.  J Biol Chem. 1991;  266 11947-11954
  • 86 Van Royen N, Piek J J, Schaper W, Bode C, Buschmann I. Arteriogenesis: Mechanisms and modulation of collateral artery development.  J Nucl Cardiol. 2001;  8 687-693
  • 87 Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor.  J Biol Chem. 1994;  269 26988-26995
  • 88 Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu J S, Isner J M. Vascular endothelial growth factor-C (VEGF‐C/VEGF‐2) promotes angiogenesis in the setting of tissue ischemia.  Am J Pathol. 1998;  153 381-394
  • 89 Yancopoulos G D, Davis S, Gale N W, Rudge J S, Wiegand S J, Holash J. Vascular-specific growth factors and blood vessel formation.  Nature. 2000;  407 242-248
  • 90 Yang D, Morris S F. Comparison of two different delay procedures in a rat skin flap model.  Plast Reconstr Surg. 1998;  102 1591-1597
  • 91 Ylä-Herttuala S M, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth.  Nature Med. 2003;  9 694-701

Thomas Holzbach
Priv.-Doz. Dr. med. Riccardo E. Giunta

Abteilung für Plastische und Wiederherstellungschirurgie
Klinikum rechts der Isar
Technische Universität München

Ismaninger Straße 22

81675 München

Email: R.Giunta@lrz.tu-muenchen.de

    >